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Abstract

Complex networks can be typically broken down into groups or modules.
Discovering this “community structure” is an important step in studying the
large-scale structure of networks. Many algorithms have been proposed for com-
munity detection and benchmarks have been created to evaluate their performance.
Typically algorithms for community detection either partition the graph (non-
overlapping communities) or find node covers (overlapping communities).

In this paper, we propose a particularly simple semi-supervised learning algo-
rithm for finding out communities. In essence, given the community information
of a small number of “seed nodes”, the method uses random walks from the seed
nodes to uncover the community information of the whole network. The algorithm
runs in time O(k ·m · log n), where m is the number of edges; n the number of
links; and k the number of communities in the network. In sparse networks with
m = O(n) and a constant number of communities, this running time is almost
linear in the size of the network. Another important feature of our algorithm is
that it can be used for either non-overlapping or overlapping communities.

We test our algorithm using the LFR benchmark created by Lancichinetti, For-
tunato, and Radicchi [15] specifically for the purpose of evaluating such algorithms.
Our algorithm can compete with the best of algorithms for both non-overlapping
and overlapping communities as found in the comprehensive study of Lancichinetti
and Fortunato [13].

1 Introduction
Many real-world graphs that model complex systems exhibit an organization into
subgraphs, or communities that are more densely connected on the inside than between
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each other. Social networks such as Facebook and LinkedIn divide into groups of friends
or coworkers, or business partners; scientific collaboration networks divide themselves
into research communities; the World Wide Web divides into groups of related webpages.
The nature and number of communities provide a useful insight into the structure and
organization of networks.

Discovering the community structure of networks is an important problem in network
science and is the subject of intensive research [7, 17, 3, 20, 5, 19, 18, 1, 22, 21]. Existing
community detection algorithms are distinguished by whether they find partitions of
the node set (non-overlapping communities) or node covers (overlapping communities).
Typically finding overlapping communities is a much harder problem and most of the
earlier community detection algorithms focused on finding disjoint communities. A
comparative analysis of several community detection algorithms (both non-overlapping
and overlapping) was presented by Lancichinetti and Fortunato in [13]. In this paper
we closely follow their test framework, also called the LFR-benchmark.

The notion of a community is a loose one and currently there is no well-accepted
definition of this concept. A typical approach is to define an objective function on the
partitions of the node set of the network in terms of two sets of edge densities: the
density of the edges within a partite set (intra-community edges) and the density of
edges across partitions (inter-community edges). The “correct” partition is the one
that maximizes this function. Various community detection algorithms formalize this
informal idea differently. One of the very first algorithms by Girvan and Newman [7]
introduced a measure known as modularity which, given a partition of the nodes of the
network, compares the fraction of inter-community edges with the edges that would be
present had they been rewired randomly preserving the node degrees. Other authors
such as Palla et al. [19] declare communities as node sets that formed by overlapping
maximal cliques. Rosvall and Bergstrom [22] define the goodness of a partition in terms
of the number of bits required to describe per step of an infinite random walk in the
network, the intuition being that in a “correct” partition, a random walker is likely
to spend more time within communities rather than between communities, thereby
decreasing the description of the walk.

A severe restriction of many existing community detection algorithms is that they
are too slow. Algorithms that optimize modularity typically take O(n2), even on sparse
networks. The overlapping clique finding algorithm of Palla et al. [19] take exponential
time in the worst case. In other cases, derivation of worst-case running time bounds are
ignored.

Our contribution. Given that it is unlikely that users of community detection
algorithms would unanimously settle on one definition of what constitutes a community,
we feel that existing approaches ignore the user perspective. To this end, we chose
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to design an algorithm that takes the network structure as well as user preferences
into account. The user is expected to classify a small set of nodes of the network into
communities (which may be 6–8% of the nodes of each community). Obviously this
is possible only when the user has some information about the network, such as its
semantics, which nodes are important and into which communities they are classified.

Such situations are actually quite common. The user might have data only on the
leading scientific authors in a co-authorship network and would like to find out the
research areas of the remaining members of the network. He may either be interested in
a broad partition of the network into into its main fields or a fine grained decomposition
into various subfields. By labeling the known authors accordingly, the user can specify
which kind of partition he is interested in. Another example would be the detection of
trends in a social network. Consider the case where one knows the political affiliations of
some people and aims to discover political spectrum of the whole network, for example,
to predict the outcome of an election.

Another scenario where this may be applicable is in recommendation systems. One
might know the preferences of some of the users of an online retail merchant possibly
because they purchase items much more frequently than others. One could then use
this in the network whose nodes consist of users, with two nodes connected by an edge
if they represent users that had purchased similar products in the past. The idea now
would be to use the knowledge of the preferences of a few to predict the preferences of
everyone in the network.

An important characteristic of algorithms surveyed in [13] is that the algorithms
either find disjoint communities or overlapping ones. Most algorithms solve the easier
problem of finding disjoint communities. The ones that are designed to find overlapping
communities such as the overlapping clique finding algorithm of Palla et al. [19] do
not seem to yield very good results (see [13]). Our algorithm naturally extends to the
overlapping case. Of course, there is a higher price that has to be paid in that the
number of nodes that need to be classified by the user typically is larger (5% to 10% of
the nodes per community). The algorithm, however, does not need any major changes
and we view this is as an aesthetically pleasing feature of our approach.

Thirdly, in many other approaches, the worst-case running time of the algorithms is
neither stated nor analyzed. We show that our algorithm runs in time O(k ·m · log n),
where k is the number of communities to be discovered (which is supplied by the user),
n and m are the number of nodes and edges in the network. In the case of sparse graphs
and a constant number of communities, the running time is O(n · log n). Given that
even an O(n2) time algorithm is too computationally expensive on many real world
graphs, a nearly linear time algorithm often is the only feasible solution.

Finally, we provide an extensive experimental evaluation of our algorithm on the
LFR benchmark. In order to ensure a fair comparison with other algorithms reviewed
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in [13], we choose all parameters of the benchmark as in the original paper.
This paper is organized as follows. In Section 2, we review some of the more influential

algorithms in community detection. In Section 3, we describe our algorithm and analyze
its running time. In Sections 4 and 5, we present our experimental results. Finally we
conclude in Section 6 with possibilities of how our approach might be extended.

2 The Major Algorithms
In what follows, we briefly describe some common algorithms for community detection.
We are particularly interested in the performance of these algorithms as reported in the
study by Lancichinetti and Fortunato [13] on their LFR benchmark graphs.

The Girvan-Newman algorithm. One of the very first algorithms for detecting
disjoint communities was invented by Girvan and Newman [7, 17]. Their algorithm
takes a network and iteratively removes edges based on a metric called edge betweenness.
The betweenness of an edge is defined as the number of shortest paths between vertex
pairs that pass through that edge. After an edge is removed, betweenness scores are
recalculated and an edge with maximal score is deleted. This procedure ends when the
modularity of the resulting partition reaches a maximum. Modularity is a measure that
estimates the quality of a partition by comparing the network with a so-called “null
model” in which edges are rewired at random between the nodes of the network while
each node keeps its original degree.

Formally, the modularity of a partition is defined as:

Q = 1
2m

∑
i,j

(
Aij −

didj

2m

)
δ(i, j), (1)

where Aij represent the entries of the adjacency matrix of the network; di is the degree
of node i; m is the number of edges in the network; and δ(i, j) = 1 if nodes i and j
belong to the same set of the partition and 0 otherwise. The term didj/2m represents
the expected number of edges between nodes i and j if we consider a random model
in which each node i has di “stubs” and we are allowed to connect stubs at random
to form edges. This is the null model against which the within-community edges of
the partition is compared against. The worst-case complexity of the Newman-Girvan
algorithm is dominated by the time taken to compute the betweenness scores and is
O(mn) for general graphs and O(n2) for sparse graphs [2].

The greedy algorithm for modularity optimization by Clauset et al.[3]. This
algorithm starts with each node being the sole member of a community of one, and
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repeatedly joins two communities whose amalgamation produces the largest increase
in modularity. The algorithm makes use of efficient data structures and has a running
time of O(m log2 n), which for sparse graphs works out to O(n log2 n).

Fast Modularity Optimization by Blondel et al. The algorithm of Blondel et
al. [1] consists of two phases which are repeated iteratively. It starts out by placing
each node in its own community and then locally optimizing the modularity in the
neighborhood of each node. In the second phase, a new network is built whose nodes
are the communities found out in the first phase. That is, communities are replaced by
“super-nodes”; the within-community edges are modeled by a (weighted) self-loop to the
super-node; and the between-community edges are modeled by a single edge between
the corresponding super-nodes, with the weight being the sum of the weights of the
edges between these two communities. Once the second phase is complete, the entire
procedure is repeated until the modularity does not increase any further. The algorithm
is efficient due to the fact that one can quickly compute the change in modularity
obtained by moving an isolated node into a community.

Lancichinetti and Fortunato opine that modularity-based methods in general have
a rather poor performance, which worsens for larger networks. The algorithm due to
Blondel et al.performs well probably due to the fact that the estimated modularity is
not a good approximation of the real one [13].

The CFinder algorithm of Palla et al. One of the first algorithms that dealt with
overlapping communities was proposed by Palla et al. [19]. They define a community to
be a set of nodes that are the union of k-cliques such that any one clique can be reached
from another via a series of adjacent k-cliques. Two k-cliques are defined to be adjacent
if they share k − 1 nodes.

The algorithm first finds out all maximal cliques in the graph, which takes exponential-
time in the worst case. It then creates a symmetric clique-clique overlap matrix C
which is a square matrix whose rows and columns are indexed by the set of maximal
cliques in the graph and whose (i, j)th entry is the number of vertices that are in both
the ith and jth clique. This matrix is then modified into a binary matrix by replacing
all those entries with value less than k− 1 by a 0 and the remaining entries by a 1. The
final step is to find the connected components of the graph represented by this binary
symmetric matrix which the algorithm reports as the communities of the network.

The authors report to have tested the algorithm on various networks including
the protein-protein interaction network of Saccharomyces cerevisiae1 with k = 4; the
co-authorship network of the Los Alamos condensed matter archive (with k = 6).

1A species of yeast used in wine-making, baking, and brewing.
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Lancichinetti and Fortunato report that CFinder did not perform particularly well on
the LFR benchmark and that its performance is sensitive to the sizes of community (but
not the network size). For networks will small communities it has a decent performance,
but has a worse performance on those with larger communities.

Using random walks to model information flow. Rosvall and Bergman [22]
approach the problem of finding communities from an information-theoretic angle. They
transform the problem into one of finding an optimal description of an infinite random
walk in the network. Given a fixed partition M of n nodes into k clusters, Rosvall and
Bergman use a two-level code where each cluster is assigned a unique codeword and
each node is assigned a codeword which is unique per community. One can now define
the average number of bits per step that it takes to describe an infinite random walk
on the network partitioned according to M . The intuition is that a random walker
is statistically likely to spend more time within clusters than between clusters and
therefore the “best” partition corresponds to the one which has the shortest possible
description. An approximation of the best partition is found out using a combination of
a greedy search heuristic followed by simulated annealing. Lancichinetti and Fortunato
report that this algorithm (dubbed Infomap) was the best-performing among all other
community detection algorithms on their benchmark.

3 The Algorithm
We assume that the complex networks that we deal with are modeled as connected,
undirected graphs. The algorithm receives as input a network and a set of nodes such
that there is at least one node from each community that we are aiming to discover.
These nodes are called seed nodes and it is possible that a particular seed node belongs
to multiple communities.

The affinity of a node in the network to a community is 1 if it belongs to it; if it
does not belong to it, it has an affinity of 0. We allow intermediate affinity values and
view these as specifying a partial belonging. The user specifies the affinities of the seed
nodes for each of the communities. For all other nodes, called non-seed nodes, we want
deduce the affinity to each community using the information given by the seed nodes’
affinities and the network structure. The main idea is that non-seed nodes should adopt
the affinities of seed nodes within their close proximity. We define a proximity measure
based on random walks: Each random walk starts at a non-seed node, traverses through
the graph, and ends as soon as it reaches a seed node. The affinity of a non-seed node u
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for a given community is then the weighted sum of the affinities of the seed nodes for
that community and reachable by a random walk starting at u, the weights being the
probabilities that a random walk from u ends up at a certain seed node.

Each step of a random walk can be represented as the iterated product of a transition
matrix P . The result of the (infinite) walk itself can be expressed as limk→∞P

k. One
of the contributions of this paper is to show how the calculation of these limits can
be reduced to solving a symmetric, diagonally dominant system of linear equations
(with different right-hand-sides per community), which can be done in O(m log n) time,
where m is the number of edges in the graph. The fact that such systems can be solved
in almost linear time was discovered by Spielman and Teng [23, 6, 24, 11, 12, 25]. If we
assume that our networks are sparse in the sense that m = O(n), the running time of
our algorithm can be bounded by O(n log n).

3.1 Absorbing Markov Chains and Random Walks
We now provide a formal description of our model. The input is an undirected, connected
graph G = (V,E) with nodes v1, . . . , vn, m edges and a nonempty set of s seed nodes.
We also know that there are k (possibly overlapping) communities which we want to
discover.

The community information of a node v is represented by a 1× k vector called the
affinity vector of v, denoted by

B(v) = (α(v, 1), . . . , α(v, k))T.

The entry α(v, l) of the affinity vector represents the affinity of node v to community l.
It may be interpreted as the probability that a node belongs to this community. We
point out that ∑k

i=1 α(v, l) need not be 1. An example of this situation is when v belongs
to multiple communities with probability 1. The user-chosen affinity vectors of all seed
nodes are part of the input. The objective is to derive the affinity vectors of all non-seed
nodes.

Since we require the random walks to end as soon as they reach a seed node, we
transform the undirected graph G into a directed graph G′ as follows: replace each
undirected edge {u, v} by arcs (u, v) and (v, u); then for each seed node, remove its
outarcs and add a self-loop. This procedure is illustrated in Figure 1.

Random walks in this graph can be modelled by an n× n transition matrix P , with

P (i, j) =
{ 1

degG′ (vi) if (vi, vj) ∈ E(G′)
0 otherwise, (2)

where degG′(v) is the degree of node v in the directed graph G′. The entry P (i, j)
represents the transition-probability from node vi to vj. Additionally, P r(i, j) may be
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x1 x2

(a) Example graph with seed nodes x1, x2.

x1 x2

(b) Example graph with seed nodes x1, x2 after transformation.

Figure 1: Remove outgoing edges and add self-loop for all seed nodes in an example graph. A
random walk reaching x1 or x2 will stay there forever.

.

interpreted as the probability that a random walk starting at node vi will end up at
node vj after r steps.

Assume that the nodes of G′ are labeled u1, . . . , un−s, x1, . . . , xs, where u1, . . . , un−s

are the non-seed nodes and x1, . . . , xs are the seed nodes. We can now write the
transition matrix P in the following canonical form:

P =
[
Q R
0s×(n−s) Is×s

]
, (3)

where Q is the (n− s)× (n− s) sub-matrix that represents the transition from non-seed
nodes to non-seed nodes; R is the (n− s)× s sub-matrix that represents the transition
from non-seed nodes to seed nodes. The s × s identity matrix I represents the fact
that once a seed node is reached, one cannot transition away from it. Here 0s×(n−s)
represents an s × (n − s) matrix of zeros. Since each row of P sums up to 1 and all
entries are positive, this matrix is stochastic.

It is well-known that such a stochastic matrix represents what is known as an
absorbing Markov chain (see, for example, Chapter 11 of Grinstead and Snell [9]). A
Markov chain is called absorbing if it satisfies two conditions: It must have at least one
absorbing state i, where state i is defined to be absorbing if and only if P (i, i) = 1 and
P (i, j) = 0 for all j 6= i. Secondly, it must be possible to transition from every state to
some absorbing state in a finite number of steps. It follows directly from the construction
of the graph G′ and the fact that the original graph was connected, that random walks
in G′ define an absorbing Markov chain. Here, the absorbing states correspond to the
set of seed nodes.

For any non-negative r, one can easily show that:

P r =
[
Qr ∑r−1

i=0 Q
i ·R

0s×(n−s) Is×s

]
. (4)
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Since we are dealing with infinite random walks, we are interested in the following
property of absorbing Markov chains.

Proposition 1. Let P be the n× n transition matrix that defines an absorbing Markov
chain and suppose that P is in the canonical form specified by equation (3). Then

lim
r→∞

P r =
[

0(n−s)×(n−s) (I −Q)−1 ·R
0s×(n−s) Is×s

]
. (5)

Intuitively, every random walk starting at a non-seed node eventually reaches some
seed node where it is “absorbed.” The probability that such an infinite random walk
starting at non-seed node ui ends up at the seed node xj is entry (i, j) of the submatrix
X := (I −Q)−1 ·R.

Now we can finally define the affinity vectors of non-seed nodes. The affinity of
non-seed node ui to a community l is defined as:

α(ui, l) =
s∑

j=1
X(i, j) · α(xj, l). (6)

The computational complexity of calculating these affinity values depends on how
efficiently we can calculate the entries ofX, i.e., solve (I−Q)−1. In the next subsection,
we show how to reduce this problem to that of solving a system of linear equations of a
special type which takes time O(m · log n), where m is the number of edges in G.

3.2 Symmetric Diagonally Dominant Linear Systems
An n× n matrix A = [aij] is diagonally dominant if

|aii| ≥
∑
j 6=i

|aij| for all i = 1, . . . , n.

A matrix is symmetric diagonally dominant (SDD) if, in addition to the above, it is
symmetric. For more information about matrices and matrix computations, see the
textbooks by Golub and Van Loan [8] and Horn and Johnson [10].

An example of a symmetric, diagonally dominant matrix is the graph Laplacian.
Given an unweighted, undirected graph G, the Laplacian of G is defined to be

LG = DG −AG,

where AG is the adjacency matrix of the graph G and DG is the diagonal matrix of
vertex degrees.
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A symmetric, diagonally dominant (SDD) system of linear equations is a system of
equations of the form:

A · x = b,

where A is an SDD matrix, x = (x1, . . . , xn)T is a vector of unknowns, and b =
(b1, . . . , bn)T is a vector of constants. There is near-linear time algorithm for solving such
a system of linear equations and this result is crucial to the analysis of the running time
of our algorithm.

The solution of n×n system of linear equations takes O(n3) time if one uses Gaussian
elimination. Spielman and Teng made a seminal contribution in this direction and showed
that SDD linear systems can be solved in nearly-linear time [23, 6, 24]. Spielman and
Teng’s algorithm (the ST-solver) iteratively produces a sequence of approximate solutions
which converge to the actual solution of the system Ax = b. The performance of such
an iterative system is measured in terms of the time taken to reduce an appropriately
defined approximation error by a constant factor. The time complexity of the ST-solver
was reported to be at least O(m log15 n) [12]. Koutis, Miller and Peng [11, 12] developed
a simpler and faster algorithm for finding ε-approximate solutions to SDD systems in
time Õ(m log n log(1/ε)), where the Õ notation hides a factor that is at most (log log n)2.
A highly readable account of SDD systems is the monograph by Vishnoi [25]. We
summarize the main result that we use as a black-box.

Proposition 2. [12, 25] Given a system of linear equations Ax = b, where A is an
SDD matrix, there exists an algorithm to compute x̃ such that:

‖x̃− x‖A ≤ ε ‖x‖A ,

where ‖y‖A :=
√
yTAy. The algorithm runs in time Õ(m · log n · log(1/ε)) time, where

m is the number of non-zero entries in A. The Õ notation hides a factor of at most
(log log n)2.

We can use Proposition 2 to upper-bound the time taken to solve the linear systems,
which are needed to calculate the affinity vectors defined in (6).

Theorem 1. Given a graph G, let P be the n×n transition matrix defined by equation (2)
in canonical form (see equation (3)). Then, one can compute the affinity vectors of all
non-seed nodes in time O(m · log n) per community, where m is the number of edges in
the graph G.

Proof. Recall that we ordered the nodes ofG as u1, . . . , un−s, x1, . . . , xs, where u1, . . . , un−s

denote the non-seed nodes and x1, . . . , xs denote seed nodes. DefineG1 := G[u1, . . . , un−s],
the subgraph induced by the non-seed nodes of G. Let A1 denote the adjacency ma-
trix of the graph G1; let D1 denote the (n − s) × (n − s) diagonal matrix satisfying
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D1(ui, ui) = degG(ui) for all 1 ≤ i ≤ n − s. That is, the entries of D1 are not the
degrees of the vertices in the induced subgraph G1 but in the graph G. We can then
express I −Q as

I −Q = D1
−1(D1 −A1). (7)

Note that D1 −A1 is a symmetric and diagonally dominant matrix. Let us suppose
that X is an (n− s)× s matrix such that

X = (I −Q)−1 ·R.

Fix a community l. Then the affinities of the non-seed nodes for community l may
be written as: 

α(u1, l)
...

α(un−s, l)

 =
s∑

j=1
α(xj, l) ·Xj

=
s∑

j=1
α(xj, l)(I −Q)−1 ·Rj

= (I −Q)−1 ·
s∑

j=1
α(xj, l) ·Rj, (8)

where Xj and Rj denote the jth columns of X and R, respectively. Using equation (7),
we may rewrite equation (8) as:

D1
−1(D1 −A1) ·


α(u1, l)

...
α(un−s, l)

 =
s∑

j=1
α(xj, l) ·Rj. (9)

Finally, multiplying by D1 on both sides, we obtain

(D1 −A1) ·αl = D1 ·
s∑

j=1
α(xj, l) ·Rj, (10)

where we used αl to denote the vector (α(u1, l), . . . , α(un−s, l))T.
Note that computing ∑s

j=1 α(xj, l) · Rj takes time O(m̃), where m̃ denotes the
number of non-zero entries2 in P . Computing the product of D1 and ∑s

j=1 α(xj, l) ·Rj

takes time O(m̃) so that the right hand side of equation (10) can be computed in time
2This is almost the same as the number m of edges in G, but not quite, since while constructing P

from the graph G, we add self-loops on seed nodes and delete edges between adjacent seed nodes, if
any. However what is true is that m̃ ≤ m + s ≤ m + n.
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Figure 2: Pipeline

O(m̃). We now have a symmetric diagonally dominant system of linear equations which
by Proposition 2 can be solved in time O(m̃ · log n). Therefore, the time taken to
compute the affinity to a fixed community is O(m̃ · log n) = O(m log n), which is what
was claimed. Since we assume our networks to be sparse, m = O(n), and the time taken
is O(n · log n) per community.

4 Experimental Setup
Our experimental setup consists of five parts (see Figure 2) but the respective parts
differ slightly depending on whether we test non-overlapping or overlapping communities.
We use the LFR benchmark graph generator developed by Lancichinetti, Fortunato, and
Radicchi [15, 13], which outputs graphs where the community information of each node
is known. From each community in the graph thus generated, we pick a fixed number of
seed nodes per community and give these as input to our algorithm. Once the algorithm
outputs the affinities of all non-seed nodes, we classify them into communities and finally
compare the output with the ground truth using normalized mutual information (NMI)
as a metric [4]. We implemented our algorithm in C++ and Python and the code is
available online.3

3At https://github.com/somnath1077/CommunityDetection
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LFR. The LFR benchmark was designed by Lancichinetti, Fortunato and Radicci [15]
generates random graphs with community structure. The intention was to establish
a standard benchmark suite for community detection algorithms. Using this bench-
mark they did a comparative analysis of several well-known algorithms for community
detection [13]. To the best of our knowledge, this study seems to be the first where
standardized tests were carried out on such a range of community detection algorithms.
Subsequently, there has been another comprehensive study on overlapping community
detection algorithms [26] which also uses (among others) the LFR benchmark. As such,
we chose this benchmark for our experiments and set the parameters in the same fashion
as in [13].

We briefly describe the major parameters that the user has to supply for generating
benchmark graphs in the LFR suite. The node degrees and the community sizes are
distributed according to power law, with different exponents. An important parameter
is the mixing parameter µ which is the fraction of neighbors of a node that do not
belong to any community that the node belongs to, averaged over all nodes. The
other parameters include maximum node degree, average node degree, minimum and
maximum community sizes. For generating networks with overlapping communities, one
can specify what fraction of nodes are present in multiple communities.

In what follows, we describe tests for non-overlapping and overlapping communities
separately, since there are several small differences in out setup for these two cases.

4.1 Non-overlapping communities
The networks we test have either 1000 nodes or 5000 nodes. The average node degree
was set at 20 and the maximum node degree set at 50. The parameter controlling the
distribution of node degrees was set at 2 and that for the community size distribution
was set at 1. Moreover, we distinguished between big and small communities: small
communities have 10–50 nodes and large communities have 20–100 nodes. For each of
the four combinations of network and community size, we generated graphs with the
above parameters and with varying mixing parameters. For each of these graphs, we
tested the community information output by our algorithm and compared it against the
ground truth using the normalized mutual information as a metric. The plots in the next
section show how the performance varies as the mixing parameter was changed. Each
data point in these plots is the average over 100 iterations using the same parameters.

Seed node generation. To use our algorithm, we expect that users pick seed nodes
from every community that they wish to identify in the network. We simulate this
by picking a fixed fraction of nodes from each community as seed nodes. One of our
assumptions is that the user knows the more important members of each community.
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To replicate this phenomenon in our experiments, we picked a node as seed node with a
probability that is proportional to its degree. That is, nodes with a higher degree were
picked in preference to those with a lower degree. For those nodes which were picked as
seed nodes, we set the affinity to a community to be 1 if and only if the node belongs to
that community and 0 otherwise.

Classification into communities. The input to the algorithm consists of the net-
work, the set of seed nodes together with their affinities. Once the algorithm calculates
the affinities of all non-seed nodes, we classify them into their respective communities.
This is quite easy for non-overlapping communities where we simply assign each node
to the community to which it has the highest affinity, breaking ties arbitrarily.

Iteration. We extended the algorithm to iteratively improve the goodness of the
detected communities. The idea is that after running the algorithm once, there are
certain nodes which can be classified into their communities with a high degree of
certitude. We add these nodes to the seed node set of the respective community and
iterate the procedure. To be precise, in the jth round, let Cj

A be the set of nodes that
were classified as community A and Sj

A be the seed nodes of community A. We create
Sj+1

A as follows: For a fixed ε > 0, choose ε · |Cj
A| nodes of Cj

A that have the highest
affinity to community A, and add them to Sj

A to obtain Sj+1
A . The factor ε declares by

how much the set of seed nodes is allowed to grow in each iteration. Choosing ε = 0.1
gives good results. Repeating this procedure several times significantly improves the
quality of the communities detected as measured by the NMI. Each iteration takes
O(k ·m · log n) time and hence the cost of running the iterative algorithm is the number
of iterations times the cost of running it once.

4.2 Overlapping Communities.
The LFR benchmark suite can generate networks with an overlapping community
structure. In addition to the parameters mentioned for the non-overlapping case, there
is an additional parameter that controls what fraction of nodes of the network are in
multiple communities. As in the non-overlapping case, we generated graphs with 1000
and 5000 nodes with the average node degree set at 20 and maximum node degree set
at 50. We generated graphs with two types of community sizes: small communities
with 10–50 nodes and large communities with 20–100 nodes. Moreover, as in [13], we
chose two values for the mixing factor: 0.1 and 0.3 and we plot the quality of the
community structure output by the algorithm (measured by the NMI) against the
fraction of overlapping nodes in the network.
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Seed Generation. As in the case for non-overlapping communities, we experimented
with a non-iterative and an iterative version of our approach. For the non-iterative
version, the percentage of seed nodes that we picked were 5, 10, 15 and 20% per
community, with the probability of picking a node being proportional to its degree. For
the iterative version, we used 2, 4, 6, 8 and 10% seed nodes per community.

Classification into communities. For the overlapping case, we cannot use the naive
strategy of classifying a node to a community to which it has maximum affinity, since
we do not even know the number of communities a node belongs to. We need a way to
infer this information from a node’s affinity vector.

For each node, we expect the algorithm to assign high affinities to the communities
it belongs to and lower affinities to the communities it does not belong to. We tried
assigning a node to all communities to which it has an affinity that exceeds a certain
threshold. This, however, did not give good results. The following strategy worked
better.

Sort the affinities of a node in descending order and let this sequence be a1, . . . , ak.
Calculate the differences ∆1, . . . ,∆k−1 with ∆j−1 := aj−1 − aj; let ∆max denote the
maximum difference and let i be the smallest index for which ∆i = ∆max. We then
associate the node with the communities to which it has the affinities a1, . . . , ai. The
intuition is that, while the node can have a varying affinity to the communities it belongs
to, there is likely to be a sharp decrease in affinities for the communities that the node
does not belong to. This is what is captured by computing the difference in affinities
and then finding out where the first big drop in affinities occurs.

Iteration. For overlapping communities, we need to extend our strategy for iteratively
improving the quality of the communities found. As in the non-overlapping case, after
j rounds, we increase the size of the seed node set of community A by a factor ε by
adding those nodes which were classified to be in community A and have the highest
affinity to this community. Let v be a such a node. The classification strategy explained
above might have classified v to be in multiple communities, say, A1, . . . , Al. In this
case, we assign v to be a seed node for communities A,A1, . . . , Al. The running time is
the number of iterations times the cost of running the algorithm once.

4.3 Normalized Mutual Information
This is an information-theoretic measure that allows us the compare the “distance”
between two partitions of a finite set. Let V be a finite set with n elements and let A
and B be two partitions of V . The probability that an element chosen uniformly at
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random belongs to a partite set A ∈ A is nA/n, where nA is the number of elements in
A. The Shannon entropy of the partition A is defined as:

H(A) = −
∑
A∈A

nA

n
log2

nA

n
. (11)

The mutual information of two random variables is a measure of their mutual
dependence. For random variables X and Y with probability mass functions p(x)
and p(y), respectively, and with a joint probability mass function p(x, y), the mutual
information I(X, Y ) is defined as:

I(X, Y ) =
∑

x∈Ω(X)

∑
y∈Ω(Y )

p(x, y) log p(x, y)
p(x)p(y) , (12)

where Ω(X) is the event space of the random variable X. The mutual information of
two partitions A and B of the node set of a graph is calculated by using the so-called
“confusion matrix” N whose rows correspond to “real” communities and whose columns
correspond to “found” communities. The entry N(A,B) is the number of nodes of
community A in partition A that are classified into community B in partition B. The
mutual information is defined as:

I(A,B) =
∑
A∈A

∑
B∈B

nA,B

n
log nA,B/n

(nA/n) · (nB/n) . (13)

Danon et al. [4] suggested to use a normalized variant of this measure. The normalized
mutual information IN(A,B) between partitions A and B is defined as:

IN(A,B) = 2I(A,B)
H(A) +H(B) . (14)

The normalized mutual information takes the value 1 when both partitions are identical.
If both partitions are independent of each other, then IN(A,B) = 0.

The classical notion of normalized mutual information measures the distance between
two partitions and hence cannot be used for overlapping community detection. Lanci-
chinetti, Fortunato, and Kertész [14] proposed a definition of the measure for evaluating
the similarity of covers, where a cover of the node set of a graph is a collection of node
subsets such that every node of the graph is in at least one set. Their definition of
normalized mutual information is:

NMILFK := 1− 1
2

(
H(A|B)
H(A) + H(B|A)

H(B)

)
. (15)
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This definition is not exactly an extension of normalized mutual information in that
the values obtained by evaluating it on two partitions is different from what is given
by normalized mutual information evaluated on the same pair of partitions. However
in this paper we use this definition of NMI to evaluate the quality of the overlapping
communities discovered by our algorithm.

We note that McDaid et al. [16] have extended the definition of normalized mutual
information to covers and that for partitions, their definition corresponds to the usual
definition of NMI.

5 Experimental Results
As in the last section, we first discuss our results for the non-overlapping case followed
by the ones for the overlapping case.

5.1 Non-overlapping communities
Figures 3, 4, and 5 show the plots that we obtained for non-overlapping communities.
Figure 3 shows tests for the non-iterative method of our algorithm with 5, 10, 15, and
20% seed nodes per community.

The first observation here is that anything less than 10% seed nodes per community
do not give good results. With a seed node percentage of 10% or more and a mixing
factor of at most 0.4 we achieve an NMI above 0.9 and can compete with Infomap,
which was deemed to be one the best performing algorithms on the LFR benchmark [13].
Above a mixing factor of 0.4, our algorithm has a worse performance than Infomap
which, curiously enough, achieves an NMI of around 1 till a mixing factor of around 0.6
after which its performance drops steeply. The drop in the performance of our algorithm
begins earlier but is not as steep. See Figure 6 for the performance of Infomap and
other algorithms that were studied in [13].

Figure 4 shows the results for the iterative approach of our algorithm in the non-
overlapping case. When compared with the non-iterative approach, one can see that
even after ten iterations there is a significant improvement in performance (See Figure 5).
As can be seen, typically with 6% seed nodes per community we obtain acceptable
performance (an NMI value of over 0.9 with the mixing factor of up to 0.5).

5.2 Overlapping communities
Figures 7 and 8 show our results for the overlapping case. In the study of Lancichinetti
and Fortunato [13], only one algorithm (Cfinder [19]) for overlapping communities was
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Figure 3: Non-iterative method for non-overlapping communities.
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Figure 4: Iterative method for non-overlapping communities.
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Figure 5: Comparison between the iterative and non-iterative method for non-overlapping
communities.
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FIG. 2: Tests of the algorithms on the LFR benchmark with
undirected and unweighted links.

of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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B. Directed and unweighted graphs

Directedness is an essential features of many real net-
works. Ignoring direction, as one often does or is forced
to do, may reduce considerably the information that one
can extract from the network structure. In particular,
neglecting link directedness when looking for communi-
ties may lead to partial, or even misleading, results. In
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of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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ties may lead to partial, or even misleading, results. In
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of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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of the real one, which is more likely found by simulated
annealing. The Cfinder, the MCL and the method by
Radicchi et al. do not have impressive performances ei-
ther, and display a similar pattern, i.e. the performance
is severely affected by the size of the communities (for
larger communities it gets worse, whereas for small com-
munities it is decent), whereas it looks rather insensitive

to the size of the network. The DM has a fair perfor-
mance, but it gets worse if the network size increases.
The same trend is shown by Infomod, where the perfor-
mance worsens considerably with the increase of the net-
work size. Infomap and RN have the best performances,
with the same pattern with respect to the size of the net-
work and of the communities: up to values of µt ∼ 1/2
both methods are capable to derive the planted partition
in the 100% of cases.

We conclude that Infomap, the RN method and the
method by Blondel et al. are the best performing algo-
rithms on the LFR undirected and unweighted bench-
mark. Since Infomap and the method by Blondel et al.
are also very fast, essentially linear in the network size,
we wonder how good their performance is on much larger
graphs than those considered in Fig. 2. For this reason we
carried out another set of tests of these two algorithms on
the LFR benchmark, by considering graphs with 50000
and 100000 nodes. We have done so also because in the
tests that can be found in the literature on community
detection one typically uses very small graphs, and the
performance can change considerably on large graphs.
In Fig. 3 we show the performance of the two methods.
Due to the large network size, we decided to pick a broad
range of community sizes, from 20 to 1000 nodes. In this
way, the heterogeneity of the community sizes is manifest.
The maximum degree here was fixed to 200. Remarkably,
the performance of the method by Blondel et al. is worse
than on the smaller graphs of Fig. 2, whereas that of
Infomap is stable and does not seem to be affected.
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B. Directed and unweighted graphs

Directedness is an essential features of many real net-
works. Ignoring direction, as one often does or is forced
to do, may reduce considerably the information that one
can extract from the network structure. In particular,
neglecting link directedness when looking for communi-
ties may lead to partial, or even misleading, results. In

Figure 6: Plots for Infomap, CFinder, the algorithm of Clauset et al., Girvan-Newman (GN),
Blondel et al., and the Pott’s model approach by Ronhovde and Nussinov (RN) on the LFR
benchmark for non-overlapping communities. As usual, the NMI-value (y-axis) is plotted
against the mixing factor (x-axis). Tests were performed on graphs with 1000 and 5000 nodes
with big (B) and small (S) communities. Reproduced from [13].

benchmarked (see Figure 12). The main difference with the non-overlapping case is
that typically our algorithm needs a larger seed node percentage per community. This
is not surprising since in the overlapping case, we would need seed nodes from the
various overlaps as well as from the non-overlapping portions of communities to make a
good-enough calculation of the affinities.

For graphs of both 1000 and 5000 nodes, our algorithm performs better than Cfinder
up to an overlapping fraction of 0.4. We stress that Cfinder has an exponential worst-case
running time and would be infeasible on larger graphs.

Figures 9 and 10 show the plots for the iterative method (with 10 iterations). A
comparison of the non-iterative and iterative method is shown in Figure 11. Iteration
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yields an improvement in performance, as measured by the NMI, but it is not as dramatic
as in the non-overlapping case with the NMI increase being at most 10% at best. The
percentage of seed nodes per community required in the iterative approach with a mixing
factor of 0.3 is around 8%.

6 Concluding Remarks
Our algorithm seems to work very well with around 6% seed nodes for the non-overlapping
case and around 8% seed nodes for the overlapping case. For the non-overlapping case,
we can work with a mixing factor of up to 0.5, whereas in the overlapping case a
mixing factor of 0.3 and with the overlapping fraction of around 20%. This of course
suggests that our algorithm has a higher tolerance while detecting non-overlapping
communities and needs either a “well-structured” network or a high seed node percentage
for overlapping communities. None of this is really surprising. What is surprising is
that such a simple algorithm manages to do so well at all.

An obvious question is whether it is possible to avoid the semi-supervised step
completely, that is, avoid having the user to specify seed nodes for every community.
One possibility is to initially use a clustering algorithm to obtain a first approximation
of the communities in the network. The next step would be to pick seed nodes from
among the communities thus found (without user intervention) and use our algorithm
to obtain a refinement of the community structure.

A possible extension of our algorithm would be to allow the user to interactively
specify the seed nodes. The user initially supplies a set of seed nodes and allows the
algorithm to find communities. The user then checks the quality of the output and, if
dissatisfied with the results, can prompt the algorithm to correctly classify some more
nodes that it had incorrectly classified in the current round. In effect, at the end of each
round, the user supplies an additional set of seed nodes until the communities found
out by the algorithm are accurate enough for the user. Such a tool might be useful for
visualization.

We wish to point out that while the running time of our algorithm is O(k ·m · log n),
we do not know of any commercial solvers for SDD systems that run in O(m · log n)
time. Since we use the Cholesky factorization method from the C++ Eigen Library, it is
unlikely that our implementation would be able to handle very large networks. Recall
that in Cholesky factorization, the matrix of coefficients A is decomposed as LDLT,
where L is lower triangular andD is diagonal, all of which takes n3/3 operations making
it prohibitively expensive for large networks (see, for instance [8]). This is not a serious
disadvantage since we expect that in the near future we would have commercial SDD
solvers implementing the Speilman-Teng algorithm. It would then be interesting to see

20



0.0 0.1 0.2 0.3 0.4 0.5
Fraction of overlapping vertices

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

1000 nodes, small communities,
non-iterative, 0.1 mixing parameter

5% seeds
10% seeds
15% seeds
20% seeds

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of overlapping vertices

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ut
ua

l I
nf

or
m

at
io

n

1000 nodes, small communities,
non-iterative, 0.3 mixing parameter

5% seeds
10% seeds
15% seeds
20% seeds

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of overlapping vertices

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ut
ua

l I
nf

or
m

at
io

n

1000 nodes, big communities,
non-iterative, 0.1 mixing parameter

5% seeds
10% seeds
15% seeds
20% seeds

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of overlapping vertices

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

ut
ua

l I
nf

or
m

at
io

n

1000 nodes, big communities,
non-iterative, 0.3 mixing parameter

5% seeds
10% seeds
15% seeds
20% seeds

Figure 7: Non-iterative method for overlapping communities on 1000 nodes.
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Figure 8: Non-iterative method for overlapping communities on 5000 nodes.
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Figure 9: Iterative method for overlapping communities on 1000 nodes.
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Figure 10: Iterative method for overlapping communities on 5000 nodes.
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Figure 11: Comparison between the iterative and non-iterative method for overlapping
communities.
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communities, whereas in the other extreme of big topo-
logical mixture and big communities it fails for any value
of µw. Modularity optimization seems to be more sensi-
tive to the community size than to the other parameters.

D. Undirected and unweighted graphs with
overlapping communities

The fact that communities in real systems often over-
lap has attracted a lot of attention in the last years, lead-
ing to the creation of new algorithms able to deal with
this special circumstance, starting from the first work by
Palla et al. [8]. Meanwhile, a few methods have been
developed [12, 39, 45–50], but none of them has been
thoroughly tested, except on a bunch of specific networks
taken from the real world. Indeed, there have been no
suitable benchmark graphs with overlapping community
structure, until recently [14, 51]. In particular, the LFR
benchmark has been extended to the case of overlapping
communities [14], and we use it here. Of our set of al-
gorithms, only the Cfinder is able to find overlapping
communities. In principle also the EM method assigns
to each node the probability that it belongs to any com-
munity, but then one would need a criterion to define
which, among such probability values, is significant and
shall be taken or is not significant and shall be neglected.
For this reason we report the results of tests carried out
with the Cfinder only.
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FIG. 6: Tests of the Cfinder on the LFR benchmark with
undirected and unweighted links and overlapping communi-
ties. The variable on the x-axis is the fraction of overlapping
nodes. The networks have 1000 nodes, the other parameters
are τ1 = 2, τ2 = 1, 〈k〉 = 20 and kmax = 50.

In Figs. 6 and 7 we show the results. The topological
mixing parameter µt is fixed and one varies the fraction
of overlapping nodes between communities. We have run
the Cfinder for different types of k-cliques (k indicates
the number of nodes of the clique), with k = 3, 4, 5, 6. In
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FIG. 7: Tests of the Cfinder on the LFR benchmark with
undirected and unweighted links and overlapping communi-
ties. The variable on the x-axis is the fraction of overlapping
nodes. The networks have 5000 nodes, the other parameters
are the same used for the graphs of Fig. 6.

general we notice that triangles (k = 3) yield the worst
performance, whereas 4- and 5-cliques give better results.
In the two top diagrams community sizes range between
10 and 50 nodes, whereas in the bottom diagrams the
range goes from 20 to 100 nodes. By comparing the di-
agrams in the top with those in the bottom we see that
the algorithm performs better when communities are (on
average) smaller. The networks used to produce Fig. 6
consist of 1000 nodes, whereas those of Fig. 7 consist of
5000 nodes. From the comparison of Fig. 6 with Fig. 7
we see that the algorithm performs better on networks of
larger size.

VII. TESTS ON RANDOM GRAPHS

An important test of community detection algorithms,
usually ignored in the literature, consists in applying
them to random graphs. In random graphs, by defini-
tion, the linking probabilities of the nodes are indepen-
dent of each other. In this way one does not expect that
there will be inhomogeneity in the density of links on the
graphs, i. e. there should be no communities. Things
are not that simple, though. It is certainly true that
on average this is what happens. On the other hand,
specific realizations of random graphs may display pseu-
docommunities, i. e., clusters produced by fluctuations
in the link density. This is why, for instance, the max-
imum modularity of partitions in random graphs is not
small [25, 52–54]. However, a good method should distin-
guish between such pseudocommunities and meaningful
modules. This is why we still expect to find no com-
munities in random graphs. We considered two types of
graphs: random graphs á la Erdös-Rényi [55], which have
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shall be taken or is not significant and shall be neglected.
For this reason we report the results of tests carried out
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undirected and unweighted links and overlapping communi-
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nodes. The networks have 1000 nodes, the other parameters
are τ1 = 2, τ2 = 1, 〈k〉 = 20 and kmax = 50.

In Figs. 6 and 7 we show the results. The topological
mixing parameter µt is fixed and one varies the fraction
of overlapping nodes between communities. We have run
the Cfinder for different types of k-cliques (k indicates
the number of nodes of the clique), with k = 3, 4, 5, 6. In
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FIG. 7: Tests of the Cfinder on the LFR benchmark with
undirected and unweighted links and overlapping communi-
ties. The variable on the x-axis is the fraction of overlapping
nodes. The networks have 5000 nodes, the other parameters
are the same used for the graphs of Fig. 6.

general we notice that triangles (k = 3) yield the worst
performance, whereas 4- and 5-cliques give better results.
In the two top diagrams community sizes range between
10 and 50 nodes, whereas in the bottom diagrams the
range goes from 20 to 100 nodes. By comparing the di-
agrams in the top with those in the bottom we see that
the algorithm performs better when communities are (on
average) smaller. The networks used to produce Fig. 6
consist of 1000 nodes, whereas those of Fig. 7 consist of
5000 nodes. From the comparison of Fig. 6 with Fig. 7
we see that the algorithm performs better on networks of
larger size.

VII. TESTS ON RANDOM GRAPHS

An important test of community detection algorithms,
usually ignored in the literature, consists in applying
them to random graphs. In random graphs, by defini-
tion, the linking probabilities of the nodes are indepen-
dent of each other. In this way one does not expect that
there will be inhomogeneity in the density of links on the
graphs, i. e. there should be no communities. Things
are not that simple, though. It is certainly true that
on average this is what happens. On the other hand,
specific realizations of random graphs may display pseu-
docommunities, i. e., clusters produced by fluctuations
in the link density. This is why, for instance, the max-
imum modularity of partitions in random graphs is not
small [25, 52–54]. However, a good method should distin-
guish between such pseudocommunities and meaningful
modules. This is why we still expect to find no com-
munities in random graphs. We considered two types of
graphs: random graphs á la Erdös-Rényi [55], which have

Figure 12: Plots for CFinder on the LFR benchmark on graphs with 1000 and 5000 nodes
with overlapping communities. Reproduced from [13].

the size range of real networks our algorithm can handle.
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