
Practical Algorithms for MSO Model-Checking on

Tree-Decomposable GraphsI

Alexander Langer, Felix Reidl, Peter Rossmanith, Somnath Sikdar

Theoretical Computer Science,

Department of Computer Science,

RWTH Aachen University,

52074 Aachen, Germany

Abstract

In this survey, we review practical algorithms for graph-theoretic problems that are
expressible in monadic second-order logic. Monadic second-order (MSO) logic allows
quantifications over unary relations (sets) and can be used to express a host of use-
ful graph properties such as connectivity, c-colorability (for a fixed c), Hamiltonicity
and minor inclusion. A celebrated theorem in this area by Courcelle states that any
graph problem expressible in MSO can be solved in linear time on graphs that admit
a tree-decomposition of constant width. Courcelle’s Theorem has been used thus far
as a theoretic tool to establish that linear-time algorithms exist for graph problems
by demonstrating that the problem in question is expressible by an MSO formula. A
straightforward implementation of the algorithm in the proof of Courcelle’s Theorem
is useless as it runs into space-explosion problems even for small values of treewidth.
Of late, there have been several attempts to circumvent these problems and we review
some of these in this survey. This survey also introduces the reader to the notions of
tree-decompositions and the basics of monadic second order logic.

Keywords: Monadic Second-Order Logic, Tree decompositions, Courcelle’s Theorem

IParts of this survey appeared in the PhD thesis of Alexander Langer [124]. The authors were
supported by the DFG grant RO 927/8.

Email addresses: langer@cs.rwth-aachen.de (Alexander Langer), reidl@cs.rwth-aachen.de
(Felix Reidl), rossmani@cs.rwth-aachen.de (Peter Rossmanith), sikdar@cs.rwth-aachen.de
(Somnath Sikdar)

Preprint submitted to Elsevier June 21, 2013

Contents

1 Introduction 3

1.1 Notation and Problems . 9

2 Treewidth and tree decompositions 10

2.1 Computing Tree Decompositions . 13

3 Logic and Graphs 14

3.1 Propositional Logic . 15
3.2 First-order Logic . 16

3.2.1 FO Model-Checking . 17
3.3 MSO Logic . 19

3.3.1 MSO-definable Properties and Graph Problems 22
3.3.2 Extended MSO . 24
3.3.3 MSO and Semiring Homomorphisms 32
3.3.4 MSO Model-Checking . 37

4 Courcelle’s Theorem for Treewidth 39

4.1 Proving Courcelle’s Theorem . 41
4.1.1 Alternative Proofs of Courcelle’s Theorem 42

4.2 On hidden Constants . 43

5 Courcelle’s Theorem in Practice 44

5.1 Not implemented or no results known . 44
5.2 Negative results and problems. 45
5.3 Precomputed and Nondeterministic Automata 48
5.4 On-the-fly Construction of Automata . 50
5.5 Reduction to Monadic Datalog . 51
5.6 A Game-theoretic Approach . 55

6 Beyond Treewidth 56

6.1 Width Measures for Dense Graphs . 57
6.1.1 Clique-width . 57
6.1.2 Rank-width . 60
6.1.3 Boolean width . 61

6.2 Variants of Treewidth . 62
6.3 Avoiding the non-elementary blow-up . 62
6.4 Lower Bounds . 63

7 Conclusions 63

7.1 Further Reading . 63
7.2 Acknowledgements . 64

2

Figure 1: A slightly simplified geographical view of the Paris railway system.

1. Introduction

Imagine yourself as a consultant of the Paris railway network. Your task is to improve
upon the existing infrastructure, which currently consists of 246 stations and a little less
than 600 km of rails, by adding new stations to accommodate a shift in population den-
sity. The new stations have to be added to the network with the objective of maximizing
accessibility of the network by potential customers. Figure 1 depicts the most important
railway stations of this network in an approximate geographical representation.

Worryingly, the task at hand is the well-known NP-complete Station Location
problem [182, 117, 134] and a brute-force approach is clearly infeasible. Worse, the real-
world cost associated with each new stations makes non-optimal solutions in the best
case costly and in the worst case unaffordable.

Let us step back and see what factors besides efficiency influence the choice of an
appropriate algorithm in such a situation:

• Optimality: Besides the high cost associated with non-optimal solutions, an addi-
tional motivation for obtaining an optimal solution is that they provide an estimate
of the bare minimum cost required.

• Resources: An estimate of the resources available plays a role in determining
which algorithms can be used.

• Generality: An algorithm is more useful if it can be used for a reasonable number
of real-world optimization problems.

3

• Usability: Lastly, the algorithm should be usable by a layman with a minimum
amount of training or supervision.

Mixed integer linear program solvers are often a very good match. In this survey,
we focus on another technique, that of MSO model-checking, which under well-defined
circumstances provides an alternative angle of attack. Before continuing, let us clarify
what we mean by this term.

Model checking is more commonly used in the field of system verification. Here logic
model checking is used to verify the functional properties of complex systems such as
hardware and software systems. The focus lies on the underlying complex system that
has to be verified. It is sometimes considered an art to find a model that sufficiently
captures the underlying system at the right level of abstraction. Logic is then used to
express the desired properties of that model such as deadlock freeness or timing behavior.
See, e.g., [8] for an introductory textbook.

In algorithms and computational complexity the term is used somewhat differently:
the focus is usually on testing some fixed property, the goal being to design efficient
algorithms that quickly check whether an arbitrary input satisfies the property. In
this context, the Model Checking problem is to check whether a given input is a
model for a—usually fixed—formula that defines the property of interest. With this
understanding, model checking in particular encompasses all optimization problems that
can be expressed in a certain logic system as a property of the input.

Let us briefly return to the Paris railway system. If we disentangle the network, the
picture depicted in Figure 2 emerges. Not only is the underlying graph of the system
planar, it contains only a few cycles—which, given the nature of the network, is not
surprising. Many local railway networks have a generic star-like structure connecting
a central station with nearby suburban stations. This structure can be exploited as
outlined in the survey [182] by Wagner: one decomposes the original Station Loca-
tion problem into sub-problems that are modeled by only a few line segments and are
efficiently solvable [83, 134]. The solutions to these sub-problems are later combined,
possibly by relaxing some of the optimization constraints.

An important feature of the network in question is that it almost looks like a tree.
The fact that many NP-hard problems become easy on trees was noticed in the 1970s
and was later quantified by Johnson [110] in a survey article where he notes that:

. . . (the class of trees) are by far the champion at rendering NP-hard problems
solvable in polynomial time . . . [110].

This statement is corroborated by the fact that this survey article considered the com-
plexity of several important graph problems including Independent Set, Clique,
Chromatic Number, Hamiltonian Cycle, Dominating Set, MaxCut, Steiner
Tree, and Graph Isomorphism on a number of graph classes. These include trees and
forests, series-parallel graphs, partial k-trees, outerplanar graphs, grid graphs, planar
graphs, genus-k graphs, Halin graphs, perfect graphs, chordal graphs, bipartite graphs,
cographs, interval graphs, and claw-free graphs.

4

Figure 2: A topological view of the Paris railway system.

Johnson also notes that on trees many problems can be solved using a generic al-
gorithm design technique, namely, by using dynamic programming [83]. But does this
scale up to more general graphs? It turns out that many of these problems can indeed be
solved in polynomial time when restricted to graphs that exhibit exactly those properties
of trees which makes them amenable to dynamic programming, such as series-parallel
graphs, outerplanar graphs, partial k-trees, Halin graphs, or interval graphs. See [110]
and the references therein for further details.

Given this state of affairs, a natural question is how one can define the property of
being “tree-like” in a mathematical context. This leads us to the notion of treewidth orig-
inally introduced by Halin [96] and later rediscovered by Robertson and Seymour [153]
as part of their Graph Minors Project, cf. [55, 70, 53]. The treewidth of a graph is
an integer that essentially measures how far removed the graph is from a tree. Trees
and forests have constant treewidth one; n× n-grids with n2 vertices have treewidth n;
and complete graphs on n vertices have treewidth n− 1, which is the maximum possible
width for an n-vertex graph. The graph classes on the high end of the spectrum are more
interesting for theoretical purposes, but indeed many important and rich graph classes
fall into the low end, i.e., their treewidth is bounded by a constant. For instance, series-
parallel and outerplanar graphs have treewidth at most two; Halin graphs have treewidth
at most five; and partial k-trees are precisely those graphs of treewidth k [159, 185, 180].
Of course, to judge the applicability of this restriction, it is even more interesting to
know that many instances that arise in practice have low treewidth. For example, the
control-flow graphs of goto-free C programs have treewidth at most six [174], and one
can show that many train and road networks have low treewidth (the Paris railway from
Figure 2 has treewidth 3). The surveys by Bodlaender [18, 21] and by Bodlaender and
Koster [15] list many more real-world examples of graphs with small treewidth.

5

A central property of graphs of treewidth k is that they can be recursively decom-
posed into smaller subgraphs of treewidth k. Such graphs are called tree-decomposable
or, simply, decomposable. The corresponding tree decomposition can be viewed as a parse
tree that explains how a treewidth k graph can be recursively generated from smaller
treewidth k graphs. This property makes it possible to run dynamic programming algo-
rithms that use the parse tree as a guide.

By the mid-80s it was known that several problems including Vertex Cover, In-
dependent Set, Dominating Set, and k-Colorability for every fixed k, admit
linear-time algorithms on graphs of bounded treewidth. These results are summarized
in the surveys by Arnborg [4] and the one by Johnson [110]. In a 1994 survey, Hedet-
niemi already lists more than 200 references [98] (see also the searchable online bibliog-
raphy [99]).

There were also several attempts at a general design paradigm for problems on graphs
on bounded treewidth. One of the first of these general results is by Takamizawa,
Nishizeki, and Saito [171, 170] who showed that all problems characterized by a finite
number of forbidden graphs admit linear-time algorithms on series-parallel graphs. This
was followed by the works of Wimer, Hedetniemi, and Laskar [186], and of Arnborg and
Proskurowski [7], both of which describe linear time dynamic programming algorithms.
A common aspect of both these approaches is that they need to be tailored to specific
problems. Even today, the majority of algorithms for graphs of bounded treewidth
essentially follow the dynamic programming framework established in [7], see, e.g., [51,
181].

Bern, Lawler, and Wong [11] considered the problem of finding an optimal sub-
graph H in a given weighted graph G. They devised a general approach for constructing
linear-time algorithms for this problem when the graph G is defined by certain rules of
decomposition and the desired subgraph H satisfies a property that is “regular” (has
finite state) with respect to these rules of decomposition.

Their regularity property has also been used later in [132, 27, 26]. Bodlaender [17] de-
fined two classes of graph decision problems and introduced polynomial time algorithms
for these problems on graphs with bounded treewidth. Scheffler and Seese [162, 160]
formalize graph properties that can be expressed in a certain local logical calculus called
“L-existential locally verifiable”, which also yields linear time algorithms for such graphs.
All these frameworks already included many important graph problems for which algo-
rithms for graphs of bounded treewidth were known, including, e.g., Vertex Cover,
3-Colorability, and Hamiltonian Cycle. By the late 1980s, Courcelle was able to
unify many previous results by showing that every problem that is definable in monadic
second-order logic (MSO), a logical calculus with huge expressive power, can be decided
in linear time on graphs of bounded treewidth. This celebrated result became known as
Courcelle’s Theorem.

Theorem 1 (Courcelle’s Theorem [37]). Fix an MSO-definable graph property Π and
a positive integer w. There is an algorithm that for every graph G = (V,E) of order
n := |V | and of treewidth at most w decides whether G ∈ Π in time O(n).

Courcelle’s Theorem was actually stated for Counting MSO (CMSO), an extension

6

of MSO by predicates that can count modulo integers, but differences can be neglected
here. We note that the approach of Bern, Lawler, and Wong [11] resembles that of
Courcelle. In particular, their technique of constructing a finite-state tree automaton
that recognizes the tree-decomposition of the input graph is also commonly used to
prove Courcelle’s Theorem (see Section 4.1). However, their approach still lacks the
syntactic formalism of MSO required to formally capture the class of problems that
admit the desired regularity property. A result very similar to Courcelle’s Theorem was
later obtained by Borie, Parker, and Tovey [27] utilizing the framework of Bern, Lawler,
and Wong. Their approach works for optimization problems such as Minimum Vertex
Cover, which cannot be expressed in MSO. At this point, we note that the language
of MSO can express only graph properties, which translates into decision problems. In
particular, optimization problems cannot be expressed in the framework of MSO logic.

Not much later, Courcelle’s Theorem was extended by Arnborg, Lagergren, and
Seese [6], who proved that the result can be lifted to a large class of decision, optimization
and counting problems. For this they define an extension of MSO called Extended MSO
(EMSO) where one can specify a property using an MSO-formula along with a function
that evaluates the solutions to the MSO-formula. In this way, decision problems with
integer numbers as a part of the input as well as optimization and counting problems
can be expressed on top of MSO. We will describe this useful concept in Section 3.3.2.
Hohberg and Reischuk [103] used homomorphisms into suitable rings to model such
evaluations. Courcelle and Mosbah [48] showed that if problem can be expressed as a
semiring homomorphism that maps satisfying assignments of the MSO-formula into a
semiring of choice (see Section 3.3.3 for details), then the problem can be solved in linear
or polynomial time on graphs of bounded treewidth. This unifies many of the previous
results such as the ones in [170, 11, 37]. We note that the results of Arnborg, Lagergren,
and Seese [6] and Courcelle and Mosbah [48] are orthogonal in the sense that each
framework includes problems that cannot be expressed in the other [48]. Finally Flum,
Frick, and Grohe [69] addressed the problem of how the linear running time predicted
by Courcelle’s Theorem can be obtained in the RAM model by using more sophisticated
data structures and algorithms.

Courcelle’s Theorem, which is a key ingredient in many papers, is one of those results
that are referred to nowadays as a meta-theorem. These are results that hold not just
for a few isolated problems but for a whole class of problems. Examples of other meta-
theorems can be found in [148, 23, 71, 64]. We also refer the reader to the surveys
on algorithmic meta-theorems by Grohe and Kreutzer [92, 119, 93]. It is important to
realize that while meta-theorems are immensely useful in quickly establishing whether
a problem at hand admits an algorithm of a particular type, they are usually not of
much use in providing algorithms that are usable. In fact, it is considered folklore
that Courcelle’s Theorem does not lead to efficient algorithms that can actually be
used in practice. For instance, Niedermeier [144] writes in his well-known textbook on
parameterized algorithms

It must be emphasized, however, that the now described methodology is of
purely theoretical interest because the associated running times suffer from

7

huge constant factors and combinatorial explosions with respect to the pa-
rameter treewidth. [. . .] After establishing fixed-parameter tractability in this
way, as a second step one should then head for a concrete, problem-specific
algorithm with improved efficiency [144, p. 169f].

Similar statements by other authors can be found in, e.g., [88, 91].
This pessimism is with good reason. First, the standard proof for Courcelle’s The-

orem requires one to construct a finite-state tree automaton that recognizes the tree-
decomposition. While the construction of finite (tree) automata from MSO formulas is
standard and particularly well-understood in theory [28, 65, 172, 54, 173], it remains a
challenging task in practice due to problems of space-explosion, cf., [115, 136].

Second, although Courcelle’s Theorem states that graph properties expressible in
MSO can be checked in linear time, theoretical lower bounds on the constant in the
running time expression show that it is simply too large to render the algorithm useful.
For example, even for trees the constant is a tower of twos 22

2...

whose height depends
on the formula:

22
·
·
·
·
22
}

height

Frick and Grohe show that these constants cannot be improved unless P 6= NP [76] (see
Section 4.2 for details). In other words, for arbitrary formulas it is simply impossible
to prove any efficient running time bounds for Courcelle’s Theorem. Of course, these
lower bounds do not hold for all input formulas. Nevertheless, even for fixed formulas
(consider a fixed problem like 3-Colorability, Hamiltonian Cycle, for instance)
it remains a tedious task to show concrete upper (or lower) bounds for the automata-
theoretic approach, see, e.g., [44, Chapter 6] or [40]. Finally, actual experiments reveal
that the problems “predicted” theoretically, in particular the space-explosion problems,
occur in practice, cf. [112, 167, 88, 87, 40] and Section 5.

This explains why the trend has now shifted from generic algorithms to specialized al-
gorithms where the dependency on the treewidth is explicitly specified. This dependency
was usually neglected in previous papers where the treewidth is considered a constant.
One of the first papers where the running times include this dependency on treewidth is
by Arnborg and Proskurowski [7], where they give some “crude performance estimates.”
For example, they (implicitly) give a running time of O(9wn) for the Minimum Domi-
nating Set problem, but it is easy to see that with minor modifications their algorithm
runs in O(5wn) time (w denotes the treewidth). The focus in their paper was on devis-
ing a design approach for linear-time algorithms for graphs of bounded treewidth, and
no effort was made to improve the dependency for particular algorithms. Nevertheless,
many of the algorithms presented in their work, including the O(2wn) algorithm for
Minimum Vertex Cover and the O(3wn) algorithm for 3-Colorability, remain the
best-known algorithms for graphs of bounded treewidth to date.

Current research in this area is mainly towards improving the running time depen-
dency on the treewidth w. For example, for Minimum Dominating Set, the running
time was first improved to O(4w · n) in [3] and to O(3w · w2n) in [181]. For further
information on such specialized algorithms for graphs of bounded treewidth, we refer

8

to the surveys of Bodlaender [20] and Bodlaender and Koster [15] and the references
therein.

We mention two recent break-through results in this area. First, Lokshtanov, Marx,
and Saurabh [131] showed that the running times of several algorithms for problems on
graphs of bounded treewidth, including the O(2wn) and O(3wn) algorithms forMinimum
Vertex Cover and 3-Colorability in [7], are essentially the best possible. Any
improvement in the running times would directly imply faster algorithms for the well-
researched SAT problem which is considered unlikely by many. Second, it has been a
long-standing open question whether several problems that obey a connectivity constraint
on the solution set (Steiner Tree, Hamiltonian Cycle, Minimum Connected
Dominating Set, . . .) allow for algorithms with a running time of O(cwpoly(n)) for a
constant c, i.e., with a single-exponential dependency on the treewidth. This has been
answered in the affirmative by Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, and
Wojtaszczyk [51] by using a novel, randomized technique called Cut-and-Count that
extends to a lot of problems with connectivity constraints.

Beside these improvements in specialized algorithms for specific problems, there is
an increasing interest in making the general approach outlined by Courcelle’s Theorem
feasible in practice. A couple of groups (including the authors of this survey) have
worked on implementations of Courcelle’s Theorem. With some considerable effort there
are ways to actually obtain algorithms that can be used in practice. In the following, we
survey work and advances in practical aspects of MSO model checking on decomposable
graphs.

1.1. Notation and Problems

Throughout this survey, we consider simple, loop-free, undirected graphs G = (V,E)
only. We always denote by n := |V | the number of vertices and by m := |E| the number
of edges of G. Let us formally define a few well-known and important graph problems
that we shall use for examples throughout this work.

We consider the three NP-complete [83] decision problems Vertex Cover, Domi-
nating Set, and 3-Colorability. These are to decide whether a graph has a small
vertex cover, a small dominating set, or whether a graph is three-colorable. We first
introduce these three graph theoretic notions. Let G = (V,E) be a graph.

• A vertex set U ⊆ V is called a vertex cover of G if for every edge {u, v} ∈ E at
least one of its endpoints u or v is contained in U .

• A vertex set U ⊆ V is called a dominating set of G if each vertex is contained in U
or has at least one neighbor that is contained in U .

• A partition R,G,B of the vertex set V is called a three-coloring if no two adjacent
vertices share the same color. We say G is three-colorable, if the vertex set of G
can be partitioned into a three-coloring R,G,B.

Note that the vertex set V is always a vertex cover and a dominating set of G. It is,
however, hard to decide whether the graph admits, respectively, a small vertex cover or

9

a small dominating set, or whether a graph is three-colorable. The following classical
decision problems are NP-complete, cf. [83].

Vertex Cover
Input: A graph G = (V,E) and an integer k
Question: Is there a vertex cover U ⊆ V of G with |U | ≤ k?

Dominating Set
Input: A graph G = (V,E) and an integer k
Question: Is there a dominating set U ⊆ V of G with |U | ≤ k?

3-Colorability
Input: A graph G = (V,E)
Question: Is G three-colorable?

We also consider the NPO-complete optimization variants of Vertex Cover and
Dominating Set, where the solution size is not part of the input:

Minimum Vertex Cover
Input: A graph G = (V,E)
Solutions: Vertex covers U ⊆ V
Goal: Minimize |U |

Minimum Dominating Set
Input: A graph G = (V,E)
Solutions: Dominating sets U ⊆ V
Goal: Minimize |U |

2. Treewidth and tree decompositions

We have mentioned that many problems become easier on trees and on graphs that
have a structure similar to trees. The notion of treewidth, which is a measure of how
close an undirected graph is to a tree, was first introduced by Halin [96] and later
rediscovered by Robertson and Seymour [153] as a crucial part of their Graph Minors
Project. The formal definition of treewidth is a little cumbersome and we therefore
propose to introduce it via an equivalent game-theoretic characterization.

The game in question is called the cops-and-robber game [128, 164]. There are two
parties in this game: a robber who lives on the vertices of a graph G = (V,E) and cops
who move about in helicopters. The cops and the robber can see each other and the goal
of the cops is to catch the robber; the goal of the robber is to evade capture. The robber
is allowed to move about in the graph using its edges at an infinite speed. The point
of the helicopters is that the cops are not constrained to move along edges, but their

10

speed is finite. Moreover, the only way the cops can catch the robber is by landing a
helicopter on the vertex occupied by the robber. The robber cannot run through a cop.
The point of the unbounded speed of the robber is that he can see where the cops are
going to land and can react before the cops have actually landed. Thus, the only way
for the cops to capture the robber is by blocking all escape routes, that is, by placing
cops on all vertices that are neighbors of the vertex occupied by the robber. We now
define the treewidth of a graph G as the minimum number of cops required to catch a
robber in G minus one. The “minus one” is cosmetic and ensures trees have treewidth
one.

In order to get a feeling for this cop-and-robber game, it is a good idea to come up
with cop or robber strategies for graphs such as trees, circles, grids, and cliques. We
will assume that the graphs we will deal with have at least two vertices as otherwise
only one cop is sufficient to catch the robber. If the graph is connected and has at least
two vertices then one cop cannot catch the robber because the latter can always move
to a cop-free vertex. For trees, it is actually quite easy to see that two cops are both
necessary and sufficient. One of the cops lands on an arbitrary vertex u of the tree T and
this forces the robber to move to a subtree Ti of T − u. The second cop then moves to
the unique neighbor of u in Ti and the game continues with the roles of cops exchanged.
The two cops effectively push the robber to a leaf of the tree and trap him there.

For a cycle Cn on n ≥ 3 vertices, two cops do not suffice. Here is a robber strategy
that demonstrates this fact. For any two vertices u, v chosen by the cops, the robber
moves to a vertex in the larger component of Cn − {u, v} before the second cop lands.
For n ≥ 3, a free vertex is always available and the robber can always elude capture.
Three cops, however, can catch the robber as follows. Place two cops at diametrically
opposite vertices of Cn. The robber must move into a path P ∈ Cn − {u, v}. Place the
third cop on a vertex that is in the middle of P and repeat. This cop strategy halves the
size of the connecting component inhabited by the robber at each stage. The process is
repeated until the robber is caught.

A clique on n vertices requires n cops as n − 1 cops always leaves a cop-free vertex
that can be used by the robber. For an n×m-grid one can show that min{n,m}+1 cops
suffice. Place min{n,m} cops on a row or column (depending on which is shorter) and
use the last cop so that the row (or column) of cops “sweep across” the grid. Showing
that min{n,m} + 1 cops are necessary is more difficult and we will not prove it here.
The interested reader may refer to [53].

Before we state the formal definition of treewidth, let us consider once again the
cop-strategy for trees. The cop-strategy in this case crucially used the fact that every
(internal) vertex of a tree is a cut-vertex. A tree can (trivially) be decomposed into
cut-vertices. The definition of treewidth essentially replicates this idea with cut-vertices
being replaced by vertex-sets which are called bags. Removing a bag decomposes the
graph into smaller pieces similar to what happens when an internal vertex of a tree
is removed. These smaller components can themselves be recursively decomposed into
bags. The treewidth of the graph is essentially the maximum size of the bags in the
decomposition. Of course, to ensure that the bags are actually cut-sets, they must satisfy

11

0
1

2
3 4

5 6

7

8

9

0,1

1

1,2 1,3

3

3,4

3,4,5

3,4,5,6

3,5,6

3,5,6,7

4

4,8

4,8,9

Figure 3: A simple graph and an optimal tree decomposition.

some additional properties which are specified in the formal definition that follows. For
a proof that the game-theoretic definition is equivalent to the one given below see [164].

Definition 2 (Tree Decomposition). A tree decomposition of a graph G = (V,E) is a
pair (T,X), where T = (I, F) is a tree, and X = {Xi | i ∈ I } is a family of subsets of
V , one for each node i ∈ I, such that

• for all vertices v ∈ V there exists i ∈ I with v ∈ Xi,

• for all edges {v,w} ∈ E there exists i ∈ I with u, v ∈ Xi, and

• for each vertex v ∈ V , the set of nodes { i ∈ I | v ∈ Xi } is connected in T .

The vertices of the tree T are usually referred to as nodes and the sets Xi are called
bags. The width of a tree decomposition is the size of the largest bag minus one. The
treewidth of a graph G is the minimum width over all possible tree decompositions of G.

Example 3. Figure 3 shows a small graph and a corresponding tree decomposition of
width 3. This is optimal because one also requires at least four cops to catch the robber
on the graph induced by the vertices 3, 4, 5, 6 alone. The bags of the tree decomposition
can be understood as the description of a cop strategy. For example, if in the very
first step the first cop lands on the cut-vertex 3 of the graph, as seen in the topmost
bag of the tree decomposition, then the robber is either in the left component induced
by the vertices 0, 1, 2 or in the right component induced by the vertices 4, . . . , 9. The
tree decomposition then tells the cops which vertex is to be blocked next; in this case,
vertex 1 or 4, respectively. The cops continue to occupy the vertices as described by
the tree decomposition, until eventually the robber is caught either on vertex 0 (with
cops on vertices 0, 1), on vertex 2 (with cops on vertices 1, 2), on vertex 7 (with cops on
vertices 3, 5, 6, 7), or on vertex 9 (with cops on vertices 4, 8, 9).

12

We mention another equivalent definition of treewidth using what are known as
partial k-trees. Partial k-trees were introduced in the 1960s [13, 14, 157], but their
connection with treewidth was established much later.

Definition 4 (k-Trees and Partial k-Trees). The class of k-trees is inductively defined
as follows.

1. A complete graph on k vertices is a k-tree.

2. If H is a k-tree on n vertices with k ≤ n, adding a new vertex and connecting it
to all the vertices of a k-clique in H creates a k-tree on n+ 1 vertices.

A partial k-tree is a graph obtained by deleting some edges (but not vertices) of a k-tree.

We have the following result.

Theorem 5 ([159, 185, 180]). A graph has treewidth k if and only if it is a partial k-tree.

It is useful to be acquainted with several equivalent definitions of treewidth because
in a given situation one definition might prove to be more useful than the others. For
example, as an application of the above theorem, we show that graphs of treewidth k
are sparse in the sense that the number of edges is a linear function of the number of
vertices:

m ≤ k · n+

(

k

2

)

To see this, simply observe that a k-tree on n vertices has exactly
(

k
2

)

+ k(n− k) edges.
In fact, the partial k-tree formulation shows that graphs of treewidth k are k-degenerate
(every subgraph of it has a vertex of degree at most k). This fact is not very easy
to see using the cops-and-robber game formulation. Sparse graphs, in general, are an
interesting topic in themselves and is an active area of research. See the recent book by
Nešetřil and Ossona de Mendez [143].

Several important graph classes occurring in practice can be shown to have small
treewidth. An oft-quoted example is the control-flow graphs of goto-free C programs
that have treewidth at most six as shown by Thorup [174]. Similar results were obtained
for Java [95] and Ada [30]. For more background on treewidth, we refer the reader to
surveys such as [18, 21].

2.1. Computing Tree Decompositions

A typical algorithm that makes use of dynamic programming on graphs of bounded
treewidth requires a tree-decomposition of the graph to be supplied as input. Therefore
being able to compute tree-decompositions of small width efficiently is crucial for practi-
cal applications. Unfortunately, the problem of deciding whether a graph has treewidth
at most width w (the Treewidth problem) is NP-complete [5].

For fixed values of w, the first polynomial-time algorithm for the problem was by
Arnborg, Corneil, and Proskurowski [5]. Their algorithm runs in time O(nw+2). More-
over, the problem admits an algorithm with running time O(f(w) · nO(1)), where f is

13

a function of w alone. That is, Treewidth is fixed-parameter tractable [55, 70, 144]
with respect to the width w as parameter. The fixed-parameter tractability of Tree-
width was first shown by Robertson and Seymour using results from their Graph Minors
Project [153, 155]. However their result is not constructive. In 1996, Bodlaender pub-
lished an algorithm that decides whether a given graph has treewidth at most w in
time O(243·w

3 · n) and if so, constructs a tree-decomposition of width at most w [19].
However this algorithm uses too much time even for w = 4 [18, 156]. In fact, it is a
challenging open problem to design a more efficient algorithm that computes an optimal
tree-decomposition.

A survey of Bodlaender and Koster [15] lists a number of algorithms that have
been implemented and tested in practice. These include polynomial-time algorithms for
bounded width, branch-and-bound algorithms, and moderately-exponential time algo-
rithms. Unfortunately, all these algorithms are either completely unusable in practice
or infeasible for non-trivial instances of reasonable sizes (larger than, say, 100 vertices).
Fortunately, in practice it usually suffices to use a heuristic for computing the tree-
decomposition, since it is used only as a guide for the dynamic programming algorithm.
Using a non-optimal tree-decomposition affects only the running time of the algorithm,
which will nevertheless output the correct solution. Several heuristics for obtaining small
tree-decompositions are known and they seem to work well in a practical setting. Often,
nearly optimal tree-decompositions can be computed [16, 24] and thus it can actually
be considered preferable to use heuristics for this step of the computation. Given that
heuristics are fast compared to the actual dynamic programming algorithm that uses
the tree-decomposition, in some situations it makes sense to use several heuristics to
compute a tree-decomposition of the input graph and use the one with the smallest
width.

The aforementioned paper [15] surveys many approximation algorithms with strict
performance guarantees and classic best-effort heuristics. The reader interested in these
algorithms are referred to [15], [44, Section 6.2] and the references therein. An experi-
mental study of the performance of a large number of treewidth heuristics can be found
in [16, 24].

3. Logic and Graphs

The main purpose of this section is to introduce the reader to logic and, in particular,
to monadic second-order logic, which is the formalism used in Courcelle’s Theorem and
its extensions. Our plan is to begin with the very basics and this approach makes this
section rather long. The reader familiar with this area may move ahead to the next
section.

Let us motivate the need for a logical formalism in computer science in general and
model-checking in particular. One can describe graph properties or graph problems in
some natural language, but natural languages are inherently ambiguous. Therefore if
we want to specify a problem as input to an algorithm, for instance, we need a formal
language that adheres to certain syntactic rules so that statements in that language

14

can be parsed by the algorithm. Furthermore, we need to ascribe meaning (semantics)
to the words of this formal language so that the algorithm can, in a sense, understand
statements in that language. These criteria are fulfilled by mathematical logics.

A logic is a formal language whose words are called formulas or statements, and they
are given a meaning or semantic by defining when statements hold, or are true in the
logic. The field of mathematical logic has natural connections to philosophical logics and
artificial languages, cf., [158]. We refer the interested reader to introductory texts such
as [25, 66, 138, 165]. In what follows, we introduce the logical calculus that is relevant
to this survey.

3.1. Propositional Logic

Propositional logic is concerned with propositions and their interrelationships. A
proposition is statement that has the property of being either true or false . Propositions
may be combined in various ways to create more complicated propositions in a way such
that the truth or falsity of resulting proposition is determined by the truth or falsity of
its component propositions.

There are three basic operations on propositions. The simplest of these is the negation
operation. Given a proposition A, the negation of A, denoted by ¬A, is a proposition
which is true if and only if A is false. The conjunction of two propositions A and B is
denoted by A ∧B. The proposition A ∧B is true if and only if both A and B are true.
The disjunction of A and B is denoted by A ∨ B and is true if and only if at least one
of A or B is true.

To formally describe the syntax of propositional logic, we start with a set A =
{A1, . . . , Ai | i ∈ N } of propositions. A propositional formula is then defined as follows.

• Every proposition is an (atomic) formula.

• If F and G are formulas, then (F ∨G) and (F ∧G) are formulas.

• If F is a formula, then ¬F is a formula.

Here is how one assigns meaning to formulas (we follow [161]): Let ΦA be the set
of all propositional formulas having atomic formulas in A, and ϕ ∈ ΦA a propositional
formula. Let α : A → {0, 1} be a function assigning truth values to propositions, where
we use the integer 0 for false and 1 for true. We call α an assignment of A. We extend
α to α : ΦA → {0, 1} via:

• α(¬F) = 1− α(F).

• α(F ∨G) is 1 if α(F) + α(G) > 0 and 0 otherwise.

• α(F ∧G) is 1 if α(F) · α(G) > 0 and 0 otherwise.

If ϕ ∈ ΦA is a formula and α : A → {0, 1} is an assignment of A, then we call α a model
for ϕ iff α(ϕ) = 1.

Using truth tables, one can show that, for instance, ¬(Ai∧Aj) is semantically equiv-
alent to ¬Aj ∨ ¬Ai and that the implications (F → G) and (F ↔ G) can be expressed

15

by the equivalent formulas (¬F ∨ G) and (F → G) ∧ (G → F), respectively, which
sometimes are convenient abbreviations when expressing properties.

3.2. First-order Logic

First-order logic (FO) builds on propositional logic by adding the quantifiers for
all (∀) and there exists (∃). In FO, we are interested in whether a formula holds on
certain structures. In this survey, we restrict ourselves to graphs which makes the logical
foundations more accessible. We follow [60].

We first fix a countably infinite set of individual variables x1, x2, . . . that we want to
use as place-holders for vertices in the problem specification. The formulas of FO are
strings that are obtained from finitely many applications of the following rules:

1. If t1 and t2 are individual variables then t1 = t2 is a formula.

2. If t1, t2 are individual variables, then adj(t1, t2) is a formula.

3. If ϕ is a formula then ¬ϕ is a formula.

4. If ϕ1, . . . , ϕk are formulas then (ϕ1 ∨ · · · ∨ ϕk) and (ϕ1 ∧ · · · ∧ ϕk) are formulas.

5. If ϕ is a formula and x is an individual variable then ∃xϕ and ∀xϕ are formulas.

Variables that are not within the scope of a quantifier are called free. Free variables
can be used to test properties w.r.t. these variables; to this end, their values will be
“provided” to the formula. A formula without free variables is called a sentence. By
free(ϕ) we denote the set of free variables of ϕ.

We now assign meanings to the logical symbols by defining the satisfaction rela-
tion |=. Let G = (V,E) be a graph. We first need to provide values for the free variables
of a formula. An assignment in G is a function α : free(ϕ) → V that assigns individual
variables values in V . For an individual variable x and an assignment α, we let α[x/a]
denote an assignment that agrees with α except that it assigns the value a ∈ V to x.
We define the relation G |= ϕ[α] (ϕ is true in G under α) as follows:

G |= t1 = t2[α] iff α(t1) = α(t2)
G |= adj(t1, t2)[α] iff {α(t1), α(t2)} ∈ E
G |= ¬ϕ[α] iff not G |= ϕ[α]
G |= (ϕ1 ∨ · · · ∨ ϕk)[α] iff G |= ϕi[α] for some 1 ≤ i ≤ k
G |= (ϕ1 ∧ · · · ∧ ϕk)[α] iff G |= ϕi[α] for all 1 ≤ i ≤ k
G |= ∃xϕ[α] iff there is an v ∈ V such that G |= ϕ[α[x/v]]
G |= ∀xϕ[α] iff for all v ∈ V it holds that G |= ϕ[α[x/v]]

If ϕ is a sentence and G |= ϕ[α], where α : ∅ → V , then we say G is a model for ϕ and
just write G |= ϕ.

Definition 6. A graph property Π is called FO-definable if there is an FO-sentence ϕ
such that for a graph G = (V,E) it holds

G ∈ Π iff G |= ϕ.

Example 7. Let k ≥ 0 be an integer.

16

• The following FO-sentence expresses that a graph has a vertex cover of size at
most k:

∃v1, . . . ,∃vk∀u∀v
(

adj(u, v) → (u = v1 ∨ v = v1 ∨ · · · ∨ u = vk ∨ v = vk)
)

In the formula, we let existential quantifiers guess k vertices of the vertex cover,
and then verify that for all edges {u, v} at least one of the endpoints is one of the
k selected vertices.

• The following FO-sentence expresses that a graph has a dominating set of size at
most k:

∃v1, . . . ,∃vk∀u∃v
(

(adj(u, v) ∨ u = v) ∧ (v = v1 ∨ · · · ∨ v = vk))
)

Again, we let existential quantifiers guess k vertices for the dominating set, and
then verify that all vertices are dominated.

Consequently, the graph properties of having a vertex cover of size at most k or a
dominating set of size at most k are FO-definable.

3.2.1. FO Model-Checking

We are now interested in the complexity of the following problem: We are given a
formula ϕ, a graph G = (V,E) and an assignment α of the free variables of the formula
in this graph, and we are asked whether G |= ϕ[α]. This is known as the FO Model-
Checking problem:

FO Model-Checking
Input: An FO-formula ϕ, a graph G = (V,E), and

an assignment α : free(ϕ) → V
Question: Does G |= ϕ[α]?

This problem is easily seen to be PSPACE-complete: Hardness follows from the
fact that quantified Boolean formulas (QBF) can naturally be written as first-order
logic formulas with equality x = y, and QBF Satisfiability is a classical PSPACE-
complete problem, cf. [168, 187]. The reduction from QBF Satisfiability to FO
Model-Checking works even if the graph (that is an input to the latter problem)
has only two vertices. This indicates that the “hardness” of FO Model-Checking
lies in the formula itself. To see that FO Model-Checking is in PSPACE we can
use Algorithm 1, which recursively tests whether the formula holds by following the
definition of the satisfaction relation |=. If k := ‖ϕ‖ denotes the length of the input
formula, it is not hard to see that Algorithm 1 uses at most nk recursive calls, and
hence its running time is O(nk+c), where c is a constant that depends on the polynomial
overhead for each recursive call.

In particular, if the formula is fixed then FO Model-Checking can be solved in
polynomial time.

17

Algorithm 1 FO-Model Checking Algorithm A(ϕ,G,α)

Input: An FO-formula ϕ, a graph G = (V,E), and an
assignment α : free(ϕ) → V

if ϕ = t1 = t2 then return 1 iff α(t1) = α(t2) and 0 otherwise
if ϕ = adj(t1, t2) then return 1 iff {α(t1), α(t2)} ∈ E and 0 otherwise
if ϕ = ¬ψ then return 1−A(ψ,G,α)
if ϕ = (ϕ1 ∨ · · · ∨ ϕk) then

for i = 1, . . . , k if A(ϕi, G, α) = 1 then return 1
return 0

if ϕ = (ϕ1 ∧ · · · ∧ ϕk) then
for i = 1, . . . , k if A(ϕi, G, α) = 0 then return 0
return 1

if ϕ = ∃xψ then

for each v ∈ V if A(ψ,G,α[x/v]) = 1 then return 1
return 0

if ϕ = ∀xψ then

for each v ∈ V if A(ψ,G,α[x/v]) = 0 then return 0
return 1

Theorem 8 (Folklore). Fix an FO-definable graph property Π. There is an algorithm
that for every graph G = (V,E) of order n := |V | decides whether G ∈ Π in time
O(poly(n)).

Hence, for every fixed FO-formula ϕ the following problem is in P:

ϕ-FO Model-Checking
Input: A graph G = (V,E), an assignment α : free(ϕ) → V
Question: Does G |= ϕ[α]?

Recall that even though Vertex Cover andDominating Set are NP-complete, check-
ing whether a graph has a vertex cover or a dominating set of at most k, respectively, is
in P for each fixed integer k, since there are only

(

n
k

)

subsets of size k, which for every
fixed k can be enumerated in polynomial time.

If we leave the realm of general graphs and consider more restricted graph classes,
then the ϕ-FO Model-Checking problem can often be solved in linear time. For
example, a result by Seese states that the problem can be solved in linear time on
graphs of bounded degree.

Theorem 9 (Seese [163]). Fix an FO-definable graph property Π and an integer d > 0.
There is an algorithm that for every graph G = (V,E) of order n := |V | and maximum
degree at most d decides whether G ∈ Π in time O(n).

The underlying reason here is, roughly speaking, that first-order formulas of size k
can only express local properties: An FO-formula of bounded size cannot distinguish

18

two vertices u1, u2 of distance large enough from each other if their local neighborhoods
of radius k are isomorphic, since each node on a path between two vertices requires one
quantifier, and thus only paths of bounded size can be defined (which corresponds to
the radius). This property is formalized in a result that is known as Gaifman’s Locality
Theorem [77]. Furthermore, on graphs of bounded degree d, the size of the neighborhood
within a constant radius r has size at most dr + 1. On graphs of bounded degree, to
decide whether the formula holds it then suffices to count the number of different local
neighborhoods up to a radius of k by a result of Hanf [97] (the Hanf-Sphere-Lemma).

Similar results were shown for several graph classes, all of which are locally re-
stricted in some sense. The running time of the algorithms in each of these cases is
either linear or almost linear: O(n1+ǫ) for an arbitrary ǫ > 0. For example, Frick and
Grohe [75] showed that ϕ-FO Model-Checking admits a linear-time algorithm for lo-
cally tree-decomposable graphs and an almost linear-time algorithm for graphs of locally
bounded treewidth. Locally tree-decomposable graphs include planar, bounded degree,
and bounded treewidth graphs. Dawar, Grohe, and Kreutzer give polynomial time al-
gorithms for graphs locally excluding an arbitrary but fixed minor, where the degree
of the polynomial does not depend on the formula [52]. All these results were gener-
alized in [59] to graphs of bounded expansion and locally bounded expansion. Graphs
of bounded expansion include, in particular, graphs of bounded treewidth, all proper
minor-closed graph classes, and graphs of bounded degree. Graphs of locally bounded
expansion include graphs of locally bounded treewidth and those locally excluding a
minor [59].

Theorem 10 (Dvořák, Král, and Thomas [59]). Fix an FO-definable graph property Π.
There is an algorithm that for every graph G = (V,E) of order n := |V | and bounded
expansion decides whether G ∈ Π in time O(n).

Theorem 11 (Dvořák, Král, and Thomas [59]). Fix an FO-definable graph property Π
and a number ǫ > 0. There is an algorithm that for every graph G = (V,E) of order
n := |V | and locally bounded expansion decides whether G ∈ Π in time O(n1+ǫ).

In this survey, we focus on monadic second-order logic, a much richer language than
FO.

3.3. MSO Logic

By Theorem 8, FO-definable graph properties can be decided in polynomial time.
Assuming P 6= NP, graph properties that are NP-hard to decide cannot be defined in
FO. One such problem is 3-Colorability, which cannot be expressed in FO. Indeed,
one would intuitively expect that a logic in which 3-Colorability can be expressed
provides methods to express that there exists a partition of the vertex set into colors
sets red, green, blue, such that no two adjacent vertices have the same color, which
requires some means to fix/guess subsets (such as colors) and check properties w.r.t.
these subsets (such as no two adjacent vertices share the same color).

Monadic second-order logic (MSO) is an extension of first-order logic which allows
quantification over sets of vertices and edges. In second-order logic, relations of arbitrary

19

arity can be subject to quantification, and MSO is the unary fragment of second-order
logic: sets are relations of arity one. To define MSO, we first fix variables that we use
as place-holders for objects and sets in the graph. We fix a countably infinite set of
individual variables x1, x2, . . . and a countably infinite set of set variables X1,X2,
Every variable x,X is said to have a type tp(x), tp(X) ∈ {1, 2} denoting whether it
refers to vertices (tp(x) = 1), edges (tp(x) = 2), vertex sets (tp(X) = 1), or edge sets
(tp(X) = 2), respectively. The formulas of MSO are strings that are obtained from
finitely many applications of the following rules:

1. If x1 and x2 are individual variables with tp(x1) = tp(x2), then x1 = x2 is a
formula.

2. If x1, x2 are individual variables with tp(x1) = tp(x2) = 1, then adj(x1, x2) is a
formula.

3. If x1, x2 are individual variables with tp(x1) = 1 and tp(x2) = 2, then inc(x1, x2)
is a formula.

4. If x is an individual variable andX is a set variable with tp(x) = tp(X), then x ∈ X
is a formula.

5. If ϕ is a formula then ¬ϕ is a formula.

6. If ϕ1, . . . , ϕk are formulas then (ϕ1 ∨ · · · ∨ ϕk) and (ϕ1 ∧ · · · ∧ ϕk) are formulas.

7. If ϕ is a formula and x is an individual variable then ∃xϕ and ∀xϕ are formulas.

8. If ϕ is a formula and X is a set variable then ∃Xϕ and ∀Xϕ are formulas.

The formulas obtained by 1–4 above are called atomic formulas. If the formulas in 8
use edge set variables (tp(X) = 2), we call this quantification an edge set quantification,
which will be of interest later. The free variables of a MSO-formula ϕ are denoted
by free(ϕ). If ϕ has free set variables only, we say ϕ is a relational formula. A formula
without free variables is called a sentence.

The quantifier rank qr(ϕ) of a formula ϕ is the maximum number of nested quantifiers
occurring in it.

qr(ϕ) := 0, if ϕ is atomic; qr(∃xϕ) := qr(ϕ) + 1;
qr(¬ϕ) := qr(ϕ); qr(∃Xϕ) := qr(ϕ) + 1;

qr(ϕ ∨ ψ) := max{qr(ϕ), qr(ψ)}; qr(∀xϕ) := qr(ϕ) + 1;
qr(ϕ ∧ ψ) := max{qr(ϕ), qr(ψ)}; qr(∀Xϕ) := qr(ϕ) + 1,

As in the case of FO, we assign meanings to the logical symbols by defining the
satisfaction relation G |= ϕ. Let G = (V,E) be a graph. We first extend the notion
of an assignment to set variables: An assignment in G is a function α that assigns
the variables of ϕ values in G. For an individual variable x and an assignment α, we
let α[x/a] denote an assignment that agrees with α except that it assigns the value a
to x, where a ∈ V if tp(x) = 1 and a ∈ E if tp(x) = 2. Similarly, for a set variable X
and an assignment α, we let α[X/A] denote an assignment that agrees with α except
that it assigns the value A to X, where A ⊆ V if tp(X) = 1 and A ⊆ E if tp(X) = 2.

20

If ϕ is a relational MSO-formula with free set variables free(ϕ) = {X1, . . . ,Xl} and
G = (V,E) is a graph, we let

assignments(ϕ,G) :=
{

α[X1/U1, . . . ,Xl/Ul]
∣

∣

Ui ⊆ V if tp(Xi) = 1 and Ui ⊆ E else
}

,

the set of assignments to variables of ϕ over G. Here, α is the empty assignment. It will
be convenient to also identify the set

{

(α(X1), . . . , α(Xl)) | α ∈ assignments(ϕ,G)
}

with the assignments assignments(ϕ,G).
We define the satisfaction relation |= as follows:

G |= t1 = t2[α] iff α(t1) = α(t2)
G |= adj(t1, t2)[α] iff {α(t1), α(t2)} ∈ E
G |= inc(t1, t2)[α] iff α(t1) ∈ V and α(t2) ∈ E and α(t1) ∈ α(t2)
G |= t ∈ X[α] iff α(t) ∈ α(X)
G |= ¬ϕ[α] iff not G |= ϕ[α]

G |= (ϕ1 ∨ · · · ∨ ϕk)[α] iff G |= ϕi[α] for some 1 ≤ i ≤ k
G |= (ϕ1 ∧ · · · ∧ ϕk)[α] iff G |= ϕi[α] for all 1 ≤ i ≤ k
G |= ∃xϕ[α] iff tp(x) = 1 and ∃v ∈ V such that G |= ϕ[α[x/v]], or

tp(x) = 2 and ∃e ∈ E such that G |= ϕ[α[x/e]]
G |= ∀xϕ[α] iff tp(x) = 1 and ∀v ∈ V , G |= ϕ[α[x/v]], or

tp(x) = 2 and ∀e ∈ E, G |= ϕ[α[x/e]]
G |= ∃Xϕ[α] iff tp(X) = 1 and ∃U ⊆ V such that G |= ϕ[α[X/U]], or

tp(X) = 2 and ∃F ⊆ E such that G |= ϕ[α[X/F]]
G |= ∀Xϕ[α] iff tp(X) = 1 and ∀U ⊆ V , G |= ϕ[α[X/U]], or

tp(X) = 2 and ∀F ⊆ E, G |= ϕ[α[X/F]]

If G |= ϕ[α], we say α satisfies ϕ on G or ϕ is true in G under α. Again, if ϕ is a sentence
and G |= ϕ[α], then we say G is a model for ϕ and just write G |= ϕ. We let

sat(ϕ,G) := {α ∈ assignments(ϕ,G) | G |= ϕ[α] }
be the set of satisfying assignments of ϕ on G. We can use the following convenient
abbreviations:

• ϕ1 → ϕ2 short-hand for (¬ϕ1 ∨ ϕ2)

• X1 ⊆ X2 short-hand for ∀x(x ∈ X1 → x ∈ X2)

Courcelle [37] considers an extension of MSO called Counting MSO (CMSO), by
which formulas are able to count modulo integers. Here, we additionally allow atomic
formulas of the form cardn,p(X) for a set variable X and integers 0 ≤ n < p and p prime,
which is satisfied if and only if |α(X)| ≡ n mod p. Most of the techniques and algorithms
discussed in the remainder of this section can be extended to CMSO. For simplicity, we
stick to MSO in the following.

21

3.3.1. MSO-definable Properties and Graph Problems

We can now introduce MSO-definable properties and graph problems.

Definition 12. A graph property Π is called MSO-definable if there is an MSO-sentence ϕ
such that for a graph G = (V,E) it holds

G ∈ Π iff G |= ϕ.

A graph decision problem is MSO-definable if it can be stated as deciding membership
of an MSO-definable graph property. A vertex set property is MSO-definable if there is
a relational MSO-formula ϕ with free(ϕ) = {X} and tp(X) = 1 such that for a graph
G = (V,E) and any U ⊆ V it holds that U has the property if and only if G |= ϕ[X/U].

Similarly, we define MSO-definable edge set properties and properties on tuples of
multiple vertex and edge sets and the corresponding membership decision problems.

Let us give some examples.

Example 13. The following properties are MSO-definable:

• The sets R,G,B partition the vertex set:

part (R,G,B) = ∀x
(

(x ∈ R ∨ x ∈ G ∨ x ∈ B) ∧
¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ R ∧ x ∈ B) ∧ ¬(x ∈ G ∧ x ∈ B)

)

• The sets R,G,B are a three-coloring:

3col ′(R,G,B) = part(R,G,B) ∧ ∀x∀y
(

adj(x, y) →
(

¬(x ∈ R ∧ y ∈ R) ∧ ¬(x ∈ G ∧ y ∈ G) ∧ ¬(x ∈ B ∧ y ∈ B)
)

)

• The graph is three-colorable:

3col = ∃R∃G∃B 3col ′(R,G,B)

• The vertex set X is a vertex cover:

vc(X) = ∀e∃x
(

inc(x, e) ∧ x ∈ X
)

Alternatively, we can avoid edge-quantification and write:

vc′(X) = ∀x∀y
(

adj(x, y) → (x ∈ X ∨ y ∈ X)
)

• The vertex set X is a dominating set:

ds(X) = ∀x
(

x ∈ X ∨ ∃y (y ∈ X ∧ adj(x, y))
)

22

• The vertex set X is connected by the edge set F , via expressing that for each
bipartition Y,X \Y of X with |Y |, |X \Y | > 0 there is an edge in F that connects
both parts.

conn(X,F) = ∀Y
(

(

∀y(y ∈ Y → y ∈ X) ∧ ∃y(y ∈ Y) ∧
∃x(x /∈ Y ∧ x ∈ X)

)

→
∃e∃x∃y (e ∈ F ∧ inc(x, e) ∧ inc(y, e) ∧

x ∈ X ∧ x /∈ Y ∧ y ∈ Y)
)

• The vertex set X is connected:

conn ′(X) = ∃F conn(X,F)

• The vertex set X is a connected dominating set:

cds(X) = ds(X) ∧ conn ′(X)

• The edge set F is an Hamiltonian cycle through the vertex set X, via expressing
that F connects X and each vertex in X has exactly two incident edges in F :

ham ′(F,X) =

(

conn(X,F) ∧

∀x∃e1 ∃e2
(

e1 ∈ F ∧ e2 ∈ F ∧ inc(x, e1) ∧ inc(x, e2) ∧

∀e3
(

(inc(x, e3) ∧ e3 ∈ F) → (e3 = e1 ∨ e3 = e2)
)

)

)

• Let
ham ′′(F) = ∀X

(

(∀xx ∈ X) → ham ′(F,X)
)

express that F ⊆ E is a Hamiltonian Cycle through all vertices. Then

ham = ∃F ham ′′(F)

expresses that the graph is Hamiltonian.

• The fixed graphH is contained as a minor: Writing the exact formula for particular
graphs H is rather tedious when done by hand, but can easily be done by a
computer program: The resulting formula states that for each vertex v of H, there
is a connected set of vertices Xv, such that there is an edge from Xv to Xu if there
is an edge from u to v in H. In other words, the formula guesses the so-called
model of H.

• As a corollary, we immediately get that planarity can be defined in MSO by ex-
cluding the graphs K5 and K3,3 as minors.

23

Note that MSO-formulas often resemble the description of properties expressed in
a natural language. For example, the formula vc(X) for vertex cover in plain English
reads

“For all edges e, there is a vertex x that is incident to e and contained in X,”

which is close to our definition of a vertex cover in Section 1.1. The formulas for con-
nectivity are not so intuitive at first glance, but these only need be defined once and
can be used as a black-box afterwards. For example, we can add the connectivity con-
straint to the dominating set formula ds(X) and obtain the formula cds for the connected
dominating set property. On the contrary, the ILP-formulation of [141] for Minimum
Connected Dominating Set, for example, guarantees connectivity of the solution by
requiring a flow between the nodes of the solution, and is quite tedious and cumbersome
to generate, which has to be done for each individual input graph. Similarly, the formula
for Hamiltonian cycles is quite intuitive when conn(X,F) is used as a black-box.

We conclude that MSO is a powerful language, which allows one to express graph
properties in a natural way. Nevertheless, this natural expression can be parsed — and
“understood” — by an algorithm. This makes MSO a powerful and convenient tool for
expressing graph problems in an algorithmic context.

The next result shows that in fact many important graph decision problems are
MSO-definable:

Theorem 14 (Arnborg, Lagergren, and Seese [6]). The problems listed in Table 1 are
MSO-definable graph problems.

Finally, we note that MSO as in our definition allows to quantify over sets of edges.
In the literature this is sometimes referred to MSO2 or two-sorted MSO, and MSO
without quantification over sets of edges, i.e., with quantification over sets of vertices
only is called MSO1 or one-sorted MSO. MSO2 is strictly more powerful than MSO1. For
instance, expressing that a graph G contains an Hamiltonian Cycle requires to quantify
over sets of edges as in formula ham of Example 13, cf. [60].

3.3.2. Extended MSO

As seen in the previous section, a large number of graph properties can be defined in
MSO. In particular, we can define properties for which the corresponding membership
problem is NP-hard or even PSPACE-hard to decide. However, problems whose input
instances consist of more than just a graph cannot be defined with a single MSO-formula.
For instance, in the Vertex Cover problem we are given a graph G and an integer k
and we are asked whether there is a vertex cover of size at most k. MSO does not provide
constructs that “speak” about integers. Since k is part of the input, we need different
formulas, one for each k — just as in Example 7, where we used a different FO-formula
for every k. Similarly, non-decision problems such as counting or optimization problems
cannot be defined in MSO at all.

To overcome these limitations, we now present an extended methodology that uses
MSO to define properties of feasible solutions, that are then evaluated in an appropriate

24

Problem G&J

Domatic Number for fixed k GT3

Chromatic Number (k-Colorability) for fixed k GT4

Achromatic Number for fixed k GT5

Monochromatic Triangle GT6

Partition into Triangles GT11

Partition into Isomorphic Subgraphs for fixed connected H

Partition into Hamiltonian Subgraphs GT13

Partition into Forests for fixed k GT14

Partition into Cliques for fixed k GT15

Partition into Perfect Matching for fixed k GT16

Covering by Cliques for fixed k GT17

Covering by Complete Bipartite Subgraphs for fixed k GT18

Induced Subgraph with MSO-property P and fixed k GT21

Induced Connected Subgraph with MSO-property P and fixed k GT22

Induced Path for fixed k GT23

Cubic Subgraph GT32

Hamiltonian Completion for fixed k GT34

Hamiltonian Cycle GT37

Hamiltonian Path GT39

Subgraph Isomorphism for fixed subgraph H GT48

Graph Contractability for fixed graph H GT51

Graph Homomorphism for fixed graph H GT52

Path with Forbidden Pairs for fixed n GT54

Kernel GT57

Degree Constrained Spanning Tree for fixed k

Disjoint Connecting Path for fixed k ND40

Chordal Graph Completion for fixed k

Chromatic Index for fixed k

Table 1: A selection of MSO-definable problems [6, Theorem 3.5] and their number in Garey & John-
son [83]

25

manner. For a motivating example, recall that we defined theMinimum Vertex Cover
optimization problem as follows:

Minimum Vertex Cover
Input: A graph G = (V,E)
Solutions: Vertex covers U ⊆ V
Goal: Minimize |U |

That is, we specify a set of feasible solutions and an optimization goal. Using the vc(X)
formula of Example 13 above, we can rephrase this as:

Minimum Vertex Cover
Input: A graph G = (V,E)
Solutions: sets U ⊆ V with G |= vc[X/U]
Goal: Minimize |U |

Here we use MSO to define feasible solutions, namely those U ⊆ V that satisfy vc[X/U].
The optimization goal remains the same.

To formally capture this concept, Arnborg, Lagergren, and Seese [6] introduce Ex-
tended MSO (EMSO), where MSO is used to define the feasible solutions, and evaluations
are used to map sets into the domain of integers or reals. Those can then be compared
to each other and any number that is part of the input. It is also possible to optimize
them against a target function or to count the number of solutions. A similar approach
to solve optimization and counting problems can be found in the aforementioned work
by Borie, Tovey, and Parker [27], which includes an extension to this kind of problems.
We now formally introduce the evaluations as given in [6].

Definition 15 (Evaluation Term, Evaluation Relation). An evaluation term over the
real variables y1, . . . , yk is a function t : Rk → R built using the arithmetic operators
−, +, ×, the real numbers, and a subset of the variables y1, . . . , yk. Let Ty1,...,yk denote
the set of all evaluation terms over y1, . . . , yk. An evaluation relation over variables
y1, . . . , yk is a propositional formula over the atomic formulas

Ay1,...,yk = { t ≤ 0, t = 0 | t ∈ Ty1,...,yk }

Note that t > 0 can be expressed as ¬(t ≤ 0) and t ≥ 0 as t > 0 ∨ t = 0.

Example 16. The following are evaluation relations:

y1 − y2 ≤ 0 3y1 − y2 = 0

2y1 − 3y2 + 28 ≤ 0 ∧ 2y23 − y1 > 0

For real numbers r1, . . . , rk we let α(r1, . . . , rk) : Ay1,...,yk → {0, 1} be an assignment
to Ay1,...,yk such that

α(r1, . . . , rk)(t(y1, . . . , yk) ≤ 0) = 1 iff t(r1, . . . , rk) ≤ 0,

26

and
α(r1, . . . , rk)(t(y1, . . . , yk) = 0) = 1 iff t(r1, . . . , rk) = 0,

i.e., the function t evaluated at positions r1, . . . , rk is at most zero or equal to zero,
respectively. As in Section 3.1, we extend α(r1, . . . , rk) to all propositional formulas over
Ay1,...,yk .

Example 17.

α(5, 7)(y1 − y2 ≤ 0) = 1

α(389, 389)(y1 − y2 ≤ 0) = 1

α(27, 15)(y1 − y2 ≤ 0) = 0

α(4, 12)(3y1 − y2 = 0) = 1

α(3, 12)(3y1 − y2 = 0) = 0

α(4, 12, 2)(2y1 − 3y2 + 28 ≤ 0 ∧ 2y23 − y1 > 0) = 1

α(3, 12, 0)(2y1 − 3y2 + 28 ≤ 0 ∧ 2y23 − y1 > 0) = 0

To simplify notation, for ψ ∈ Ay1,...,yk we simply write ψ(r1, . . . , rk) = true to express
that α(r1, . . . , rk)(ψ) = 1 holds.

We are now ready to define EMSO-definable problems. Roughly speaking, an EMSO-
definable problem consists of an MSO-formula and an evaluation relation such that yes-
instances are precisely those for which there exists an assignment that satisfies both the
formula and the evaluation relation.

Definition 18 (Arnborg, Lagergren, and Seese [6]). A graph problem P is called EMSO-
definable if there is a relational MSO-formula ϕ with l free set variables free(ϕ) =
{X1, . . . ,Xl}, integers m, t ∈ N, and an evaluation relation ψ over variables y1, . . . , ylm+t

such that for a graph G = (V,E), weight functions w1, . . . , wm : V ∪E → R and integers
z1, . . . , zt we have:

(G,w1, . . . , wm, z1, . . . , zt) is a “yes”-instance of P if and only if there is (U1, . . . , Ul) ∈
assignments(ϕ,G) such that

G |= ϕ[X1/U1, . . . ,Xl/Ul]

and

ψ

(

∑

u∈U1

w1(u), . . . ,
∑

u∈Ul

w1(u), . . . ,
∑

u∈U1

wm(u), . . . ,
∑

u∈Ul

wm(u), z1, . . . , zt

)

= true.

The integers z1, . . . , zt and the weight functions are part of the input instances and
are given as arguments to a multi-variate evaluation relation. This formal definition,
particularly the last line, is somewhat cumbersome. The last line simply means that we
are applying each of the m weight functions to each element of the l set U1, . . . , Ul (l ·m
arguments), and the t additional arguments correspond to the t integers z1, . . . , zt given
as part of the input. Most natural problems have simple and straight-forward evaluation
relations. Let us give some examples.

27

Example 19.

• The Vertex Cover decision problem, where the input is a graph G = (V,E) and
an integer k, is EMSO-definable using the MSO-formula vc(X) of Example 13,
m = t = 1 with z1 = k and the evaluation relation ψ = y1− y2 ≤ 0. The necessary
weight function w1 : V → R of Definition 18 is implicitly given via w1(v) := 1 for
all v ∈ V .

• In the Weighted Dominating Set decision problem, we are given a graph G =
(V,E), an number k and a weight function w1 : V → R and we have to decide
whether there is a dominating set U ⊆ V for G that has total weight

∑

u∈U w1(u) ≤
k.

This problem is EMSO-definable using the MSO-formula ds(X) of Example 13,
m = t = 1 with z1 = k and the evaluation relation ψ = y1 − y2 ≤ 0.

• The 3-Colorability problem is MSO-definable and does not require the EMSO
machinery. Suppose therefore that for some reason we are interested in only par-
ticular three-colorings, where one color set has exactly two times the weight of the
second color set. In this problem, we are given a graph G = (V,E) and a weight
function w1 : V → R, and we are to decide whether there is a three-coloring R,G,B
of G with

∑

r∈Rw1(r) = 2
∑

g∈Gw1(g).

This problem is EMSO-definable using the MSO-formula 3col ′(R,G,B) of Exam-
ple 13, m = 1, t = 0, and the evaluation relation ψ = y1 − 2y2 = 0.

We can now extend this concept to optimization problems. For EMSO-definable
optimization problems, in addition to an MSO-formula and an evaluation relation, one
has an objective function. Given an input, the goal is to find an assignment that not
only satisfies the formula and the evaluation relation but maximizes (or minimizes) the
objective function.

Definition 20 (Arnborg, Lagergren, and Seese [6]). A problem P is an EMSO-definable
optimization problem if there exists a relational MSO-formula ϕ with free set variables
free(ϕ) = {X1, . . . ,Xl}, integers m, t ∈ N, real variables y1, . . . ylm+t, an evaluation
term t(y1, . . . , ylm+t) and an evaluation relation ψ over y1, . . . , ylm+t such that P can be
expressed as finding the maximum (or minimum) of the evaluation term

t

(

∑

u∈U1

w1(u), . . . ,
∑

u∈Ul

w1(u),
∑

u∈Um

wm(u), . . . ,
∑

u∈Um

wm(u), z1, . . . , zt

)

over all (U1, . . . , Ul) ∈ assignments(ϕ,G) subject to

G |= ϕ[X1/U1, . . . ,Xl/Ul]

and

ψ

(

∑

u∈U1

w1(u), . . . ,
∑

u∈Ul

w1(u), . . . ,
∑

u∈U1

wm(u), . . . ,
∑

u∈Ul

wm(u), z1, . . . , zt

)

= true.

28

Here G = (V,E) is a graph, w1, . . . , wm : V ∪E → R are weight functions and z1, . . . , zt
are integers, all of which are part of the input to P .

P is called a linear EMSO-definable optimization problem (also called LinMSO op-
timization problem) if t(y1, . . . , ylm+t) is a linear function in y1, . . . , ylm and ψ is always
true.

Example 21. We give some examples.

• The Minimum Vertex Cover optimization problem is linear EMSO-definable
using the MSO-formula vc(X) of Example 13, m = 1, t = 0, and the task is
to minimize the value of the evaluation term t(y1) = y1. The weight function
w1 : V → R is implicitly given via w1(v) := 1 for all v ∈ V .

• The Minimum Weighted Dominating Set optimization problem for a graph
and a weight function w1 : V → R is linear EMSO-definable using the MSO-
formula ds(X) of Example 13, m = 1, t = 0, and the task is to minimize the value
of the evaluation term t(y1) = y1.

• The Traveling Sales Person optimization problem is linear EMSO-definable
using the MSO-formula ham ′′(F) of Example 13, m = 1, t = 0, and the task is to
minimize the value of the evaluation term t(y1) = y1. Here, the weight function
w1 : E → R is part of the input.

• Suppose we want to find a three-coloring on a graph with two weight functions
w1, w2 : V → R that maximizes the term

(

∑

r∈R

w2(r)

)2

− 3
∑

b∈B

w2(b),

but still maintains the property
∑

r∈R w1(r) = 2
∑

g∈Gw1(g) of the previous ex-
ample.

This problem is EMSO-definable using the MSO-formula 3col ′(R,G,B) of Exam-
ple 13, m = 2, t = 0, and the evaluation relation ψ = y1 − 2y2 = 0. The task is to
maximize the value of the evaluation term t(y1, y2, y3, y4, y5, y6) = y24 − 3y6.

Finally, Arnborg et al. [6] consider counting problems: For a fixed relational MSO-
formula ϕ with free set variables free(ϕ) = {X1, . . . ,Xl} and an input graph G = (V,E),
one has to compute the number of solutions |sat(ϕ,G)|.

A large number of classical and important graph optimization problems are EMSO-
definable or even linear EMSO-definable.

Theorem 22 (Arnborg, Lagergren, and Seese [6]). The problems listed in Tables 2 and 3
are linear EMSO-definable optimization problems.

Theorem 23 (Arnborg, Lagergren, and Seese [6]). The problems listed in Table 4 are
EMSO-definable problems.

29

Problem G&J

Minimum Vertex Cover GT1

Minimum Dominating Set GT2

Minimum Feedback Vertex Set GT7

Partial Feedback Edge Set for fixed maximum cycle length l GT9

Minimum Maximal Matching GT10

Partition into Cliques GT15

Maximum Clique GT19

Maximum Independent Set GT20

Induced Subgraph with MSO-property P GT21

Induced Connected Subgraph with MSO-property P GT22

Induced Path GT23

Balanced Complete Bipartite Subgraph GT24

Bipartite Subgraph GT25

Degree-bounded Connected Subgraph for fixed d GT26

Planar Subgraph GT27

Transitive Subgraph GT29

Uniconnected Subgraph GT30

Minimum k-connected Subgraph for fixed k GT31

Hamiltonian Completion GT34

Multiple Choice Matching for fixed J GT55

k-closure GT58

Path Distinguishers GT60

Maximum Leaf Spanning Tree ND2

Minimum Edge/Vertex Deletion for any MSO-property P [162]

Unit Weight Steiner Tree

Unit Weight Longest Path

Unit Weight Longest Cycle

Table 2: A selection of linear EMSO-definable optimization problems with weight functions bounded by
a constant [6, Theorem 3.6] and their number in Garey & Johnson.

30

Problem G&J

Minimum Weighted Vertex Cover

Minimum Weighted Dominating Set

Maximum Weighted Independent Set

Bounded Diameter Spanning Tree for fixed D ND4

Steiner Tree ND12

Maximum Cut ND16

Longest Cycle ND28

Longest Path ND29

Table 3: A selection of linear EMSO-definable optimization problems with integer valued weight func-
tions [6, Theorem 3.7] and their number in Garey & Johnson.

Problem G&J

Partition into Isomorphic Subgraphs for fixed H GT12

Partition into Perfect Matchings GT16

kth Best Spanning Tree for fixed k ND9

Bounded Component Spanning Forest for fixed k ND10

Minimum Cut into Bounded Sets ND17

Shortest Weight-Constrained Path ND30

kth Shortest Path for fixed k ND31

Table 4: A selection of EMSO-definable problems [6, Theorem 3.8] and their number in Garey & Johnson.

31

3.3.3. MSO and Semiring Homomorphisms

The EMSO-machinery extends over plain MSO by allowing numerical input param-
eters, numerical evaluations and the definition of optimization and counting problems.
Yet, there are several “non-numerical” problems that do not fit into this framework. For
example, there are problems where one has to compute a list of tuples of vertices that
satisfy certain constraints. One may also consider multiple optimization goals at once to
output a list of Pareto-optimal solutions. The machinery considered by Courcelle and
Mosbah [48] extends Courcelle’s Theorem to this kind of problems.

To introduce this machinery, we first observe that a graph problem P can also be
understood as the task of computing the value of gP (G) for an input graph G. Following
the terminology of [48], gP is an evaluation that maps the graph G into an appropriate
domain. For instance, we usually have gP : G → {true , false} for decision problems,
gP : G → R ∪ {−∞,+∞} for optimization problems, or gP : G → N for counting prob-
lems. However, we may also have much different evaluations, as in, say,

gP : G 7→ {(v1,1, . . . , v1,l), . . . , (vs,1, . . . , vs,l)},

which maps the graph G = (V,E) into a set of l-tuples of vertices vi,j ∈ V , or gP : G 7→
2R×R, which might map a graph G into a set of Pareto-optimal solution sizes.

As we are concerned with MSO-definable problems in this survey, we are interested
in those evaluations for which we have

g(G) = h(sat(ϕ,G)),

where ϕ is the MSO-formula, sat(ϕ,G) is the set of satisfying assignments of ϕ on G,
and h is some suitable function. For example, in the case of linear EMSO optimization
problems the solutions (U1, U2, . . . , Uk) ∈ sat(ϕ,G) are mapped into the integers or real
numbers via the evaluation term, and among all such numbers the optimal value opt is
chosen. Hence, in this case, gP (sat(ϕ,G)) := opt .

In many cases, gP maps graphs into the universe of some semiring, e.g., N or R

with the standard addition and multiplication operations. It was shown by Courcelle
and Mosbah in [48] that, if h resembles an homomorphism into such an semiring, then
gP (G) = h(sat(ϕ,G)) can be computed efficiently on graphs of bounded treewidth.

This is a powerful machinery as it applies to a rich class of problems that cannot
be captured in EMSO. In order to define it formally, we first need a couple of further
definitions.

Definition 24 (Semiring). A semiring is a tuple R = (UR,⊕,⊗, 0̂, 1̂), where UR is
a non-empty set called the universe of R, and ⊕ and ⊗ are the binary addition and
multiplication operations with the following properties:

1. (UR,⊕, 0̂) is a commutative monoid with neutral element 0̂ (zero): for all a, b, c ∈
UR,

(a) (a⊕ b)⊕ c = a⊕ (b⊕ c)
(b) a⊕ 0̂ = 0̂⊕ a = a

32

(c) a⊕ b = b⊕ a.

2. (UR,⊗, 1̂) is a monoid with neutral element 1̂ (one): for all a, b, c ∈ UR,

(a) a⊗ (b⊗ c) = (a⊗ b)⊗ c
(b) a⊗ 1̂ = 1̂⊗ a = a.

3. multiplication distributes over addition: for all a, b, c ∈ UR,

(a) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(b) (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

4. 0̂ annihilates under ⊗, i.e., for all u ∈ UR it holds: 0̂⊗ u = u⊗ 0̂ = 0̂.

Example 25. We list a few natural semirings frequently used for graph problems:

• Boolean := ({false , true},∨,∧, false , true) for decision problems.

• Counting := (N,+, ·, 0, 1), i.e., the natural numbers with the standard addition
and multiplication.

• MinCard := (N ∪ {∞},min,+,∞, 0) for optimization problems. In this ring the
+ is the multiplication with neutral element 0.

Note that the conditions of semirings are indeed satisfied: Both operations provide
monoids over N, N is annihilated by ∞ under the multiplication +, since a+∞ =
∞ for all a ∈ N, and for any three integers a, b, c ∈ N we have a + min{b, c} =
min{a+ b, a+ c}, i.e., + distributes over min.

More generally, MinWeight := (R∪{∞},min,+,∞, 0) can be used for optimization
problems with real weights.

Example 25 gives some prominent examples of semirings commonly used. For in-
stance, MinCard and MinWeight are often implicitly used when finding solutions for
minimization problems. For a comprehensive list of algorithmically useful semirings
see [48, Section 4].

We now define the semiring that corresponds to the domain of the mapping h to be
used. Note that the domain of h contains sets of assignments, since we are interested
in the value of h(sat(ϕ,G)), where sat(ϕ,G) ⊆ assignments(ϕ,G) is the set of satisfying
assignments. The universe of the ring is therefore the power set of assignments(ϕ,G).
We define the semiring

assignring(ϕ,G) := (A,∪, ∪̂, ∅, ∅̂),

where A = 2assignments(ϕ,G). The addition ∪ in the semiring is the standard union of sets
with the neutral element ∅. This is because if A,B ⊆ S are two sets of assignments,
then also A ∪ B is a set of assignments. The multiplication in this ring is the following
operation ∪̂. Given two tuples (U1, . . . , Ul) and (U ′

1, . . . , U
′
l) with U1, . . . , Ul, U

′
1, . . . , U

′
l ⊆

V ∪E, we first let

(U1, . . . , Ul) ∪̂ (U ′
1, . . . , U

′
l) := (U1 ∪ U ′

1, . . . , Ul ∪ U ′
l).

33

That is, a ∪̂ b for two l-tuples a, b is an element-wise (set) union. We extend this to sets
of l-tuples A,B via a Cartesian product of the form

A ∪̂ B := { a ∪̂ b | a ∈ A ∧ b ∈ B }.

The neutral element of ∪̂ is ∅̂ = {(∅, . . . , ∅)}, i.e., a set that contains a single tuple, whose
elements are the empty set. Note that indeed the empty set (the neutral element of the
addition) annihilates w.r.t. the multiplication ∪̂, because taking the Cartesian product
with an empty set results in the empty set.

The intention behind the ∪̂-operation becomes apparent once we return to the field of
decomposable graphs, where a graph G can recursively be decomposed into subgraphs G1

and G2. One can, roughly speaking, combine assignments for G1 with assignments for
G2 in an Cartesian style manner, i.e., one can inductively compute the set of satisfying
assignments for the input graph G from those of its subgraphs. In fact, the main result
of [48] states that for many mappings h the value of h(sat(ϕ,G)) can be computed
in the same inductive manner on decomposable structures as it can be done [37] for
sat(ϕ,G) [48, Theorem 2.10].

Definition 26. An homomorphism from a semiring (U1,⊕1,⊗1, 0̂1, 1̂1) into a semiring
(U2,⊕2,⊗2, 0̂2, 1̂2) is a map h : U1 → U2 such that for all a, b ∈ U1 it holds:

• h(a⊕1 b) = h(a) ⊕2 h(b);

• h(a⊗1 b) = h(a) ⊗2 h(b); and

• h(1̂1) = 1̂2.

Let G be a graph and ϕ an MSO-formula. We call two sets A,B ⊆ assignments(ϕ,G)
separated if Ui ∩ U ′

j = ∅ for all (U1, . . . , Ul) ∈ A, for all (U ′
1, . . . , U

′
l) ∈ B and all

1 ≤ i, j ≤ l.
A weak homomorphism from assignring(ϕ,G) into a semiring (UR,⊕,⊗, 0̂, 1̂) is a

map h : 2assignments(ϕ,G) → UR such that for all A,B ⊆ assignments(ϕ,G) it holds:

• h(A ∪B) = h(A) ⊕ h(B) if A ∩B = ∅;

• h(A ∪̂ B) = h(A) ⊗ h(B) if A and B are separated;

• h(∅) = 0̂; and

• h(∅̂) = 1̂.

We can now define MSO-evaluation problems:

Definition 27 (cf. Courcelle, Mosbah [48]). A graph problem P is an MSO-evaluation
problem if there is a relational MSO-formula ϕ and a semiring R = (UR,⊕,⊗, 0̂, 1̂) such
that P can be stated as computing h(sat(ϕ,G)) ∈ UR, where a graph G = (V,E) and the
weak semiring homomorphism h between assignring(ϕ,G) and R are part of the input.

34

Remark 1. A few words on the input size are in order. The domain of h is huge
compared to G, since it is the power set of the set of l-tuples over subsets of V and E.
Fortunately, h is a weak semiring homomorphism, i.e., we have h(Ū1∪Ū2) = h(Ū1)⊕h(Ū2)
for disjoint sets of assignments Ū1, Ū2 ⊆ assignments(ϕ,G). We can therefore recursively
split a set Ū ⊆ assignments(ϕ,G) with |Ū | > 1 into disjoint subsets Ū = Ū1 ∪ Ū2 until
eventually both have size 1. The value of h(Ū) for arbitrary Ū ⊆ assignments(ϕ,G) can
then be computed from the values h(Ū ′) of the singleton sets Ū ′ ⊆ assignments(ϕ,G)
with |Ū ′| = 1 by a number of applications of the addition operation ⊕ in the tar-
get semiring. However, there still is an exponential number of singleton sets Ū ′ ⊆
assignments(ϕ,G), since each element in Ū ′ is a tuple of subsets of V ∪E. For these, we
can use the same recursive decomposition using the multiplication ∪̂, since {(U1, . . . , Ul)}
with |Ui| > 1 for some 1 ≤ i ≤ l can recursively be separated as

{(U1, . . . , Ul)} = {(U ′
1, . . . , U

′
l)} ∪̂ {(U ′′

1 , . . . , U
′′
l)},

until all the sets Ui have size at most 1. This leaves us with only O(|V ∪ E|l) different
singleton sets, for which we need to provide the value of h as an input to the algorithm.
Using a number of addition and multiplication operations in the semiring, we can then
compute h(Ū) for arbitrary Ū ⊆ assignments(ϕ,G).

The concept of MSO-evaluation problems and semirings will be much clearer with
some concrete examples.

Example 28. Consider again the formula ϕ = vc(X) expressing that the set X is a
vertex cover for the input graph G. We shall now define several variants of the classical
Vertex Cover problem by simply considering different semirings and suitable weak
homomorphisms h. Note that by Remark 1 the weak homomorphism h is sufficiently
described by defining its value on the elementary elements {(U)}, where U ⊆ V (G) with
|U | ≤ 1.

1. Let h1 : 2
assignments(ϕ,G) → MinCard such that h1 maps a set A of assignments to

the minimum size of all assignments in A, and to ∞ if A is empty. More formally,
let h1(A) = min

{

|U |
∣

∣ (U) ∈ A
}

and h1(∅) = ∞. We verify that h1 is a weak
homomorphism from assignring(ϕ,G) to MinCard:

• h1(∅) = ∞ is the zero in MinCard.

• h1(∅̂) = h1({(∅)}) = min{|∅|} = 0 is the one in MinCard.

• For A,B ⊆ assignments(ϕ,G), we have

h1(A ∪B) = min
{

|U |
∣

∣ (U) ∈ A ∪B
}

= min
{

min
{

|U |
∣

∣ (U) ∈ A
}

,min
{

|U |
∣

∣ (U) ∈ B
}

}

= min {h1(A), h1(B)} .

35

• For separated A,B ⊆ assignments(ϕ,G), we have

h1(A ∪̂ B) = min
{

|U |
∣

∣ (U) ∈ A ∪̂ B
}

= min
{

|UA ∪ UB |
∣

∣ (UA) ∈ A, (UB) ∈ B
}

= min
{

|UA|+ |UB |
∣

∣ (UA) ∈ A, (UB) ∈ B
}

= min
{

|UA|
∣

∣ (UA) ∈ A
}

+min
{

|UB |
∣

∣ (UB) ∈ B
}

= h1(A) + h1(B).

Since h1(sat(ϕ,G)) = min
{

|U |
∣

∣ (G,α[X/U] |= ϕ)
}

, where α is the empty assign-
ment, we have that h1(sat(ϕ,G)) is the size of a minimum vertex cover for G. The
Minimum Vertex Cover optimization problem is therefore an MSO-evaluation
problem.

2. More generally, for a weight function w : V → R, let h2 : 2
assignments(ϕ,G) →

MinWeight such that h2 maps a set A of assignments to the minimum weight
of all assignments in A.
The Minimum Weighted Vertex Cover optimization problem, where w : V →
R is part of the input, can be stated as computing h2(sat(ϕ,G)), where h2 : {(u)} 7→
w(u), ∅ 7→ ∞, is part of the input (cf., Remark 1).

3. Let h3 : 2
assignments(ϕ,G) → Counting such that h3(A) = |A| is the number of assign-

ments in A. Then h3 is a weak homomorphism from assignring(ϕ,G) to Counting:

• h3(∅) = 0 is the zero in Counting.

• h3(∅̂) = |{(∅)}| = 1 is the one in Counting.

• For disjoint A,B ⊆ assignments(ϕ,G), we have

h3(A ∪B) = |A ∪B| = |A|+ |B| = h3(A) + h3(B).

• For separated A,B ⊆ assignments(ϕ,G), we have

h3(A ∪̂ B) = |A ∪̂ B| =
∣

∣{ a ∪̂ b | a ∈ A, b ∈ B }
∣

∣

= |A| · |B| (since A and B are separated)

= h3(A) · h3(B)

Since h3(sat(ϕ,G)) is the number of solutions to the MSO-formula ϕ in G, the #P-
hard #Vertex Cover counting problem [178] is an MSO-evaluation problem.

4. For a more sophisticated example, let’s assume we want to compute at once, for
each size k, the number of vertex covers of size k. For, we first define the following
semiring:

CardCounting := (UR,⊕,⊗, 0̂, 1̂),
where elements of UR = N × N × · · · are infinite sequences of natural numbers.
An entry (ni)i≥0 = (n0, n1, . . .) ∈ UR means there are n0 solutions of size 0, n1
solutions of size 1 and so forth. The addition ⊕ is the element-wise addition defined
via

(ni)i≥0 ⊕ (n′i)i≥0 := (ni + n′i)i≥0

36

with neutral element 0̂ = (0, 0, . . .) (all zeros). The multiplication ⊗ is defined via

(ni)i≥0 ⊗ (n′i)i≥0 :=
(

∑

a,b≥0
a+b=i

na · n′b
)

i≥0

with neutral element 1̂ = (1, 0, 0, . . .). We routinely confirm that the semiring
properties are fulfilled; we particularly note the annihilation of ⊗ under 0̂.
Now let h4 : 2

assignments(ϕ,G) → CardCounting be the weak homomorphism such
that h4(∅) = 0̂ and for all (U) ∈ assignments(ϕ,G) we have

h4({(U)}) = (ni)i≥0 with ni =

{

1 i = |U |
0 i 6= |U |

Computing h4(sat(ϕ,G)) = (ni)i≥0 then yields the desired list (ni)i≥0 of num-
bers ni, where an entry ni is the number of vertex covers of G of size i. Note that
we have ni = 0 for i > |V |, and hence (ni)i≥0 has a finite and small description.

This example demonstrates the versatility of the MSO-evaluations approach, where
a single fixed formula vc(X) defining the vertex cover property of sets X can be used to
define several variants of the Vertex Cover problem by simply changing the homo-
morphism used. Courcelle and Mosbah [48] remark that the homomorphism machinery
has previously been used in [103], but there without the backing of the general MSO
framework. They also write that the homomorphism-approach can be seen as a syntac-
tic characterization of the regular sets of Borie, Tovey, and Parker [27]. We mention
again that the homomorphism approach is orthogonal to the EMSO approach in the
sense that there are problems that can be expressed as an MSO-evaluation but are
not EMSO-definable and vice versa. For example, the cardinality counting problem in
Example 28-4 is not EMSO-definable.

3.3.4. MSO Model-Checking

As in the case of FO, we are now concerned with the following problem: We are
given an MSO-formula ϕ, a graph G = (V,E) and an assignment to the free variables
of the formula α, and we are asked whether G |= ϕ[α]. This is known as the MSO
Model-Checking problem:

MSO Model-Checking
Input: An MSO-formula ϕ, a graph G = (V,E), and an

assignment α to the free variables of ϕ
Question: Does G |= ϕ[α]?

Since MSO contains all of FO, this problem is PSPACE-hard (cf., Section 3.2.1). By
a slight modification of Algorithm 1, depicted in Algorithm 2, we also get that MSO
Model-Checking is in PSPACE. Let again k = ‖ϕ‖ be the length of a suitable encoding
of the input formula and n = |V | the size of the graph. Algorithm 2 uses polynomial

37

Algorithm 2 MSO-Model Checking Algorithm A(ϕ,G,α)

Input: An MSO-formula ϕ, a graph G = (V,E), and an
assignment α to the free variables of ϕ

if ϕ = t1 = t2 then return 1 iff α(t1) = α(t2) and 0 otherwise
if ϕ = t ∈ X then return 1 iff α(t) ∈ α(X) and 0 otherwise
if ϕ = adj(t1, t2) then return 1 iff {α(t1), α(t2)} ∈ E and 0 otherwise
if ϕ = ¬ψ then return 1−A(ψ,G,α)
if ϕ = (ϕ1 ∨ · · · ∨ ϕk) then

return 1 iff there is 1 ≤ i ≤ k with A(ϕi, G, α) = 1 and 0 otherwise
if ϕ = (ϕ1 ∧ · · · ∧ ϕk) then

return 0 iff there is 1 ≤ i ≤ k with A(ϕi, G, α) = 0 and 1 otherwise
if ϕ = ∃xψ and tp(x) = 1 then

return 1 iff there is v ∈ V with A(ψ,G,α[x/v]) = 1 and 0 otherwise
if ϕ = ∀xψ and tp(x) = 1 then

return 0 iff there is v ∈ V with A(ψ,G,α[x/v]) = 0 and 1 otherwise
if ϕ = ∃xψ and tp(x) = 2 then

return 1 iff there is e ∈ E with A(ψ,G,α[x/e]) = 1 and 0 otherwise
if ϕ = ∀xψ and tp(x) = 2 then

return 0 iff there is e ∈ E with A(ψ,G,α[x/e]) = 0 and 1 otherwise
if ϕ = ∃Xψ and tp(x) = 1 then

return 1 iff there is U ⊆ V with A(ψ,G,α[X/U]) = 1 and 0 otherwise
if ϕ = ∀Xψ and tp(x) = 1 then

return 0 iff there is U ⊆ V with A(ψ,G,α[X/U]) = 0 and 1 otherwise
if ϕ = ∃Xψ and tp(x) = 2 then

return 1 iff there is F ⊆ E with A(ψ,G,α[X/F]) = 1 and 0 otherwise
if ϕ = ∀Xψ and tp(x) = 2 then

return 0 iff there is F ⊆ E with A(ψ,G,α[X/F]) = 0 and 1 otherwise

space since the recursion depth is bounded by k and the assignment α can be encoded
with O(kn2) bits. The algorithm therefore needs polynomial space only. However, if the
formula contains q nested set quantifiers the algorithm requires more than 2qn recursive
calls, and hence it is clearly not feasible for practical applications on any non-trivial
instance.

A simple modification of Algorithm 2 can be used to solve most of the EMSO-
definable problems and MSO-evaluations in polynomial space. For example, if we are
to solve an EMSO-definable problem, we simply enumerate all assignments in the way
Algorithm 2 iterates through sets for quantifiers ∀X and ∃X, and then checks whether
the evaluation relation is true. For optimization problems, we simply optimize over all
such solutions, and counting problems can equally easy be solved. Hence, most of these
problems are in PSPACE as well. Note, however, that MSO-evaluations can be used to
output, say, the list sat(ϕ,G) of all satisfying assignments, whose representation is not
polynomial in the input size.

38

Consider now the case that the MSO-formula is fixed. This is a natural assumption
from an algorithmically focused viewpoint since (E)MSO-definable problems and MSO-
evaluations use fixed MSO-formulas. For every fixed MSO-formula ϕ we define the
following problem.

ϕ-MSO Model-Checking
Input: A graph G = (V,E), and an assignment α

to the free variables of ϕ
Question: Does G |= ϕ[α]?

For example, if ϕ = 3col of Example 13, then 3col -MSO Model-Checking is sim-
ply the standard 3-Colorability problem, and ham-MSO Model-Checking is the
classical Hamiltonian Cycle problem. Since these are NP-complete, there is little
hope that the ϕ-MSO Model-Checking problem can be solved in polynomial time
on general graphs. On the other hand, a well-known result by Doner [54] and Thatcher
and Wright [172] states that the ϕ-MSO Model-Checking problem can be solved in
linear time on labeled binary trees. The proofs actually show that a tree-language L is
regular if and only if it is MSO-definable, and therefore one can construct a finite-state
tree automaton that recognizes the language L. The construction of the tree automaton
depends on the formula ϕ only, which is fixed, and can hence done in constant time.
The simulation of a run of the automaton on the input tree T takes time linear in the
number of nodes in T . MSO-model-checking is therefore computationally easy on trees.
As we will see in the next section, the linear-time automata approach for labeled trees
can be lifted to tree-like graphs — more precisely, to graphs of bounded treewidth.

4. Courcelle’s Theorem for Treewidth

As we have already seen in the introduction, Courcelle’s Theorem unified a large
number of results on efficient algorithms for tree-decomposable graphs. We restate the
theorem and its extensions for easy reference.

Theorem 29 (Courcelle’s Theorem [37, Proposition 4.14]). Let P be an MSO problem
defined by an MSO-formula ϕ and let w be a positive integer. There is an algorithm A
and a function f : N×N → N such that for every graph G = (V,E) of order n := |V |
and treewidth at most w, A solves P on input G in time f(‖ϕ‖, w) · n, where ‖ϕ‖ is the
length of ϕ.

The function f(‖ϕ‖, w) is an iterated exponential of height Θ(‖ϕ‖), that is,

f(‖ϕ‖, w) = 22
·
·
·
·
2w

}

Θ(‖ϕ‖).

Furthermore, Frick and Grohe have shown that unless P = NP, the function f can-
not be upper bounded by an iterated exponential of bounded height in terms of ϕ

39

and w [76]. Note that for a fixed MSO-definable graph property Π and constant tree-
width w, Courcelle’s Theorem states that membership in Π can be decided in linear
time, since f(‖ϕ‖, w) is a constant “hidden” in the O(n) of Theorem 1.

This result has been generalized to EMSO-definable problems by Arnborg, Lagergren,
and Seese in 1991 and to MSO-evaluations (with homomorphisms) by Courcelle and
Mosbah in 1993.

Theorem 30 (Arnborg et al. [6]). Let P be an EMSO-definable problem or an EMSO-
definable optimization problem with weight functions bounded by a constant, and w ∈ N

an integer. Then one can solve P on graphs G = (V,E) of order n := |V | and treewidth
at most w in time O(fP (w) · n).

Theorem 31 (Arnborg et al. [6]). Let P be an EMSO-definable counting problem or an
EMSO-definable optimization problem with integer-valued weight functions, and w ∈ N

an integer. Then one can solve P on graphs G = (V,E) of order n := |V | and treewidth
at most w in time O(fP (w) · poly(n)).

Theorem 32 (Courcelle and Mosbah [48]). Let P be an MSO-evaluation problem. Then
one can solve P on graphs G = (V,E) of order n := |V | and treewidth at most w in time
O(fP (w) · poly(n)).

We remark that the polynomial time increase for the integer-valued EMSO-definable
problems stems from the time required to process numbers of unbounded size, which
requires time ω(1). For linear EMSO-definable optimization problems one can improve
this to time O(n log n) in the logarithmic cost measure and to time O(n) in the uniform
cost measure, since here arithmetic operations take constant time. See the discussion
in [6]. Similarly, many MSO-evaluations of practical interest can actually be solved in
time O(n) or time linear in the input size plus the output size. For example, the list of
numbers nk of vertex covers of size k as in Example 28-4 requires a representation of
size ω(n), since the n numbers can range from 0 to 2n. It can, however, be computed
in time linear in the input size plus the resulting output size. In [48, Section 4], the
complexity of several practically important MSO-evaluations is discussed.

From the theorems above, we immediately get the following result.

Corollary 1. On graphs of bounded treewidth,

1. the problems depicted in Tables 1 and 2 can be solved in linear time.

2. the problems depicted in Tables 3 and 4 can be solved in polynomial time.

3. the problems depicted in Table 3 can be solved in linear time in the uniform cost
measure.

Furthermore, it has been shown that the linear time requirement in Courcelle’s The-
orem can be replaced by logarithmic space.

Theorem 33 (Elberfeld, Jakoby, and Tantau [62]). Let Π be an MSO-definable graph
property and w ∈ N an integer. Then one can decide membership in Π for input graphs
G = (V,E) of order n := |V | and treewidth at most w in space O(log n).

40

(T,X) ⇒ T ′

ϕ⇒ ϕ′ ϕ′ ⇒ A
T ′

?∈ L(A)

Figure 4: The proof. Left column: MSO-interpretation of G in T
′ and the corresponding conversion of

the formula. Middle column: MSO-to-FTA conversion. Right column: Automata run.

Theorem 33 can be extended to counting problems [62, 63].

The true beauty of the MSO based approach lies in the fact that it suffices to define the
graph problem (for general graphs) in MSO, and yet in many cases no further work has
to be spent on the details of how the problem can actually be solved.

In particular, Courcelle’s Theorem states that there is at least one algorithm that
can solve it in linear time for graphs of bounded treewidth. In practice, however, it
can be left to the implementation to choose the actual strategy that is used to solve
the particular MSO Model-Checking instance at hand. For example, the polynomial
space Algorithm 2 is very fast for small inputs and the approaches presented in the
following exploit the decomposability of the input graphs.

The versatility that lies within the separation of problem definition and concrete
solving makes the MSO approach a powerful method in the algorithmist’s toolbox.

4.1. Proving Courcelle’s Theorem

The literature is rich in different techniques to prove Courcelle’s Theorem. It is safe
to say that the standard method to prove Courcelle’s Theorem is a reduction of the
ϕ-MSO Model-Checking problem for graphs of bounded treewidth to the ϕ′-MSO
Model-Checking for labeled binary trees. The formula ϕ′ can be easily obtained
from ϕ by applying a number of somewhat technical, but nevertheless straight-forward
rewriting rules. In the world of logic, such a reduction is called an interpretation of
theories [150, 33]. It is well-known [172, 54] that the latter problem can be solved in
linear time by constructing a suitable finite-state tree automaton (FTA). The advantage
is that the underlying methods (MSO-to-FTA conversion) and the MSO interpretation
techniques are well understood and widely covered in the literature.

An accessible exposition of this proof can be found in Kreutzer’s survey on algorith-
mic meta-theorems [119]. For readers who are also interested in details on the MSO-
to-FTA conversion for binary trees we can recommend the detailed and self-contained
exposition in [70, Chapters 10 and 11].

Since the literature is rich in proofs of Courcelle’s Theorem, we shall only give a
brief description of this reduction method. For simplicity, we prove it for MSO-definable
graph properties only, i.e., MSO sentences without free variables, but the extension
to multiple free variables, and hence to EMSO-definable problems or MSO-evaluations
with homomorphisms is not hard, see, e.g., the original proof for EMSO-problems in [6],
or [44, Section 6.3].

The overall strategy is depicted in Figure 4 and explained in the following. First fix
an MSO-sentence ϕ and an integer w ∈ N. For an input graph G = (V,E) of treewidth

41

at most w, we first need to obtain a tree-decomposition (T,X) of width w. This tree-
decomposition can be obtained in time O(n) using Bodlaender’s Algorithm [19]. Next,
we identify the tree-decomposition with a labeled binary tree T ′ over a fixed alphabet Σw.
This alphabet is quite large but has bounded size. At a node v ∈ V (T), a label of the
binary tree encodes, for instance, which vertices inXv are adjacent. The resulting labeled
binary tree T ′ completely describes the input graph G. In other words, we have found
a way to interpret the graph G in a labeled binary tree T ′ with labels from Σw. From
the MSO-interpretation theory we therefore get that we can convert ϕ into a formula ϕ′

such that G |= ϕ if and only if T ′ |= ϕ′. This conversion can easily be performed by a
computer program in constant time (since ϕ is fixed). Once we have done this, we can
use the standard MSO-to-FTA conversion due to Doner–Thatcher–Wright to construct
a finite-state tree automaton A with T ′ ∈ L(A) iff T ′ |= ϕ.

This concludes the proof since a run of the automaton A on T ′ can be simulated
in linear time. We also mention in this context [69], where much care has been taken
to prove how the linear running for this automata simulation can in fact be obtained.
Similarly, it is shown in [62] that Bodlaender’s Algorithm as well as the simulation of
the run of the automaton can be done in logarithmic space, yielding Theorem 33.

4.1.1. Alternative Proofs of Courcelle’s Theorem

There are several alternative ways to prove Courcelle’s Theorem. From a broad
perspective, the overall “spirit” of the proofs is remarkably similar: at a high level, all
algorithms rely on a finite table-lookup strategy that resembles the finite-state automata
approach. One might therefore argue that, essentially, all known proofs of Courcelle’s
Theorem explicitly or implicitly emulate the automata-theoretic approach. However, the
low-level proof details have a huge impact w.r.t. practical applications, as we will see in
Section 5. We therefore briefly survey other proof techniques.

The technique we outlined above, i.e., a reduction to the classical model checking
problem for MSO on labeled trees, has been described by many authors, see, e.g., [6, 74,
69, 70, 119]. A direct and explicit construction of the tree automata from the original
formula ϕ, i.e., one that avoids the interpretability machinery of the previous section, is
described in, e.g., [183] or [44, Section 6.3].

Courcelle’s original paper proves [37, Proposition 4.14] the existence of such an au-
tomaton, cf. [37, Propositions 4.3 and 1.6], but the construction is not immediate. Simi-
larly, in [2, 55] a Myhill-Nerode type argument is used to show that the treewidth parse
tree operators admit a right congruence with finitely many congruence classes, i.e., the
tree language is finite-state (regular) and can be recognized by an FTA. The method
of test sets can be used to construct the tree automata of [37, 2, 55]. See, e.g., [55,
Section 6.1] for details.

A model-theoretic variant to prove Courcelle’s Theorem is based on the Feferman–
Vaught Theorem [67] (also called Splitting Theorem), which can be extended to MSO,
cf., [37, 94, 133]. The Splitting Theorem essentially states that if a graph G can be
decomposed into two subgraphs G1 and G2, then from the input formula ϕ one can
construct a reduction sequence of finitely many MSO-formulas that holds in G1 and G2

42

if and only if ϕ holds in G, cf., [37, 44, 94, 133]. These new MSO-formulas have the same
quantifier rank as ϕ. Since there are only finitely many formulas of quantifier rank q,
eventually these formulas must repeat in the process (but their actual number is huge!).
By induction, one can therefore use dynamic programming on the tree decomposition to
compute the q-theory of G, i.e., set of formulas of quantifier rank at most q that hold
in G (cf., [74, 92, 133]). See [92] for an accessible exposition.

Similarly, Courcelle and Mosbah [48] show how a combination of the Splitting The-
orem [37] and a dynamic programming algorithm can be used to compute the set of
satisfying assignments for the input formula [48]: First, one traverses the tree decom-
position of the input graph top-down and applies the Splitting Theorem at every single
node, which yields a reduction sequence of finitely many MSO-formulas. In the leaves,
we evaluate these formulas, and then use bottom-up dynamic programming to finally
evaluate whether the formula ϕ is true on G.

Gottlob, Pichler, and Wei [88] show that the set of satisfying assignments of ϕ on G
can be described in monadic Datalog, and this description can effectively be obtained
from the MSO input formula, see [88, Theorem 4.6]. Their proof does not rely on the
Splitting Theorem but is based on Ehrenfeucht-Fräıssé games [88, Lemmas 3.5-3.7]. The
monadic Datalog approach of [88] has also been studied in [72, 73]. We will revisit this
approach and its practical utility in Section 5.5.

Another approach [116] is based on model-checking games [100, 89, 90]. This game-
theoretic approach does not rely on automata or the Splitting Theorem. Rather, it
is essentially a variant of Algorithm 2 that uses dynamic programming on the tree-
decomposition to compute the result. It is shown in [116] that the number of entries
in the dynamic programming algorithm’s tables is bounded by a constant, which then
yields the desired linear running time. We will cover this approach in Section 5.6.

4.2. On hidden Constants

Unfortunately, the function f in the running time bound given in Theorem 29 grows
extremely fast. That is, the constants hidden in the O-notation for the running time
bound given in Theorem 1 are very large. MSO logic has huge expressive power in that
already very short formulas can be used to express hard problems. Indeed, the size
of the automaton for an MSO-formula in terms of the formula cannot be bounded by
an elementary function [169, 151]. Frick and Grohe prove in [76] non-elementary worst-
case lower bounds for the multiplicative constants in the linear running time. A function
f : C×· · ·×C → C is elementary if it can be written in a “closed” form over the complex
numbers, the elementary functors −, +, × and a constant number of exponentials and
logarithms.

Theorem 34 (Frick, Grohe [76]). Assume that P 6= NP. Then there is no algorithm
that, given an MSO sentence ϕ and a tree T decides whether T |= ϕ in time f(‖ϕ‖)nO(1),
where f is an elementary function and n = |V (T)|.

This latter theorem makes it impossible to prove any efficient running time bounds
for Courcelle’s Theorem, and no general algorithm can asymptotically be better than the

43

automata approach. Note, however, that the proof of Theorem 34 uses a reduction from
an NP-hard problem and therefore the constructed MSO-formulas are not very natural.
More precisely, they will most probably not appear in typical practical applications.
For particular problems, say Minimum Vertex Cover, Minimum Dominating Set,
or 3-Colorability, one can indeed show that these problems can be solved much
faster on graphs of bounded treewidth, as stated in the introduction. Typical problems
that admit efficient algorithms for graphs of bounded treewidth, including these three
problems, admit formulas with few nested quantifiers. In his PhD thesis, Weyer [183]
studies the growth of the constants in the O-notation in terms of the number of nested
quantifier alternations of the input formula. The upper and lower bounds obtained [183,
Chapter 6] provide a good explanation for the actual complexity of problems observed
in practical experiments. Nevertheless, the MSO Model-Checking problem remains
problematic in practical applications even for formulas of small or moderate quantifier
rank. This will be covered in the next section.

5. Courcelle’s Theorem in Practice

Courcelle and Engelfriet mention in [44, p. 504] that MSO model-checking for decom-
posable graphs (e.g., [37, 47]) has been cited in different fields of applied computer sci-
ence, such as, e.g., computational biology [130], computational linguistics [111], database
querying [9], logistics [140], telecommunications [137], quantum computing [179], or the
aforementioned [174] on register allocation for compilers, to name a few. It is therefore
of great interested to make Courcelle’s Theorem useful in practice.

For weak second-order logic of two successors (WS2S), which for finite graphs coin-
cides with MSO, there is a powerful and established software called MONA [114]. MONA
was developed over the course of many years by Klarlund, Møller, and Schwartzbach
and essentially implements the Doner–Thatcher–Wright MSO-to-FTA conversion. It
contains many tricks and improvements such as formula reductions, guided tree au-
tomata, eager minimization, BDD-based automata representations, or cache-conscious
data structures [115]. It has found a wide practical application in different areas such
as hardware and program verification or natural languages, see [115] and the references
therein.

Nevertheless, using the reduction procedure outlined in Section 4.1 to generate input
instances for MONA does not yield practically usable algorithms for the MSO Model-
Checking problem. In this section we survey not only the advances but also the negative
results in this research area.

5.1. Not implemented or no results known

We are not aware of any implementations of Courcelle’s Theorem based on the Split-
ting Theorem approach. The generation of all possible reduction sequences for MSO-
formulas “obviously is not practical” [133, Section 1.6], as their number grows too fast
with the quantifier rank. The algorithms presented in [74, 133] are therefore infeasible
in practice. However, from [48] we get that computing the particular reduction sequence

44

for the input formula ϕ suffices. Some lower bounds are known for the necessary conver-
sions into disjunctions [139], but it would still be interesting to see how this approach
behaves in practice. We consider this as an interesting direction for future research.

It is mentioned in [55] that a Myhill–Nerode based program implementing the method
of test sets has been developed as part of an M.Sc. thesis, which unfortunately does not
seem to be available any more. The aforementioned thesis of Sloper [166] describes an
implementation of the method of test sets with practical applications in mind, but it is
presented for word automata only. We are not aware of any extensions to tree automata
and corresponding experiments for decomposable graphs.

5.2. Negative results and problems.

We start with reporting on negative results, because they will help us understand
design decisions that led to progress and faster implementations.

It turns out that the major limiting factor in practical applications of Courcelle’s
Theorem are the space (memory) requirements of known algorithms. Recall that the ma-
jority of the known algorithms for bounded treewidth graphs use the tree-decomposition
as a guide for dynamic programming. For most problems, an exponential or even super-
exponential number of entries have to be stored in the dynamic programming table.
This includes the majority of known, specialized algorithms for specific problems. For
instance, the Θ(2wn)-time algorithm for Minimum Vertex Cover [7] requires space
Θ(2w), where w is the width of a given tree decomposition for the input graph. Similarly,
the algorithms for 3-Colorability [7] and Minimum Dominating Set [181] use ta-
bles with Θ(3w) entries, and the algorithms based on the Cut-and-Count technique [51]
use tables of size Θ(cw), where the constant c depends on the particular problem. Due
to the nature of these algorithms, the table entries are accessed very frequently. More
precisely, all of them are accessed at least once for every node of the tree decomposi-
tion. Swapping out entries from memory to slower second-tier storage (e.g., hard disks
or SSDs) is therefore usually not an option as the huge performance penalty on I/O
to the second-tier storage renders the known algorithms useless in practice. We would
therefore consider it a major improvement to find an algorithm for, say, Minimum Ver-
tex Cover with a running time of O(cwpoly(n)) for, say, c < 10, and subexponential
space O(2o(w)).

Space requirements are also the major problem for all proof techniques we outlined in
the previous section, particularly for the automata theoretic approach. As a somewhat
surprising fact, space is even a problem for the logspace algorithm of [62]. For practical
applications the main goal is therefore to make the space requirements feasible. In
fact, many of the “implementation secrets” for MONA [115] are concerned with memory
requirements, such as the usage of a BDD representation or of so-called guides that can
be used as additional hints for the automaton in order to decrease automata size.

In the automata based approach, every quantifier alternation (∀∃ or ∃∀) in the for-
mula induces a power set construction during the construction of the finite-state tree
automaton. This is because for a formula ∀xϕ, the FTA construction described by
Doner–Thatcher–Wright first constructs the non-deterministic automaton A for the for-
mula ∃x¬ϕ, and then converts it into the complement automaton A

′ that recognizes the

45

complement language L(A′) of L(A) (note that ∀xϕ = ¬∃x¬ϕ). The complementation
is typically preceded with determinization using a power set construction, because for
deterministic automata we can simply invert the set of accepting states. Each such
power set construction may yield an deterministic automaton that has size exponential
in the size of the previous non-deterministic automaton. A formula with k quantifier-
alternations can therefore require a deterministic automaton, whose size is a k-times
iterated exponential. It is well-known [169, 151] that this blow-up is not avoidable. Fur-
thermore, as a consequence of the Grohe and Frick lower-bound [76] (see Section 4.2),
no general algorithm can perform better than the automata approach.

In practice, of course, not all resulting automata are that large. However, even
when the final deterministic automaton is “small” and fits into memory, the power
set construction of an intermediate non-deterministic automaton might be prohibitively
expensive. Unfortunately, this is in fact observed in practical experiments. The space
required to construct the automata, both using MONA and with direct constructions,
causes major problems in applications [112, 167, 88, 136].

In his thesis [167], Soguet systematically studied the sizes of the finite-state tree
automata corresponding to various problems for graphs of small clique-width.1 The
automata were generated with MONA. Among the problems considered are properties
that can be decided in polynomial time even on general graphs, and properties that are
NP-hard on general graphs but polynomial-time solvable in the considered graph classes.
The following is a list of some of the problems considered by Soguet in his thesis:

∆(G) ≤ i? Is the maximum degree ∆(G) of G at most i ∈ {3, 4}?
x, y connected? Are the two vertices x and y connected by a path in G?

Connected Is the graph connected?

2-Disjoint Paths Are there two disjoint paths in G that connect, respectively, the
vertices s1 and t1 as well as the vertices s2 and t2?

vc′(X) The set X is a vertex cover for G (cf., Example 13).

clique(X) The set X is a clique in G.

i-Clique Does G contain a clique of size at least i ∈ {3, 4}?
i-Vertex Cover Does G have a vertex cover of size at most i ∈ {3, 4}?

Bipartite Is G bipartite (two-colorable)?

3-Colorability Is G three-colorable?

Table 5 shows the sizes of the finite-state tree automata Soguet constructed for
graphs of clique-width 2 and 3. We list here the sizes of the BDD representations for the

1Like treewidth, clique-width is a width measure for decomposable graphs, but the tree automata
are easier to construct; the results do also shed light on the automata-approach for graphs of bounded
treewidth. See Section 6 for more details on clique-width and the MSO Model-Checking problem for
graphs of bounded clique-width.

46

Problem Complexity in cw = 2 cw = 3

general graphs states nodes states nodes

∆(G) ≤ 3? O(n) 91 1341 fail

∆(G) ≤ 4? O(n) 231 4178 fail

x, y connected? O(n+m) 26 444 fail

Connected O(n+m) 11 96 fail

2-Disjoint Paths O(n2) [113] fail fail

clique(X) O(n2) 5 22 9 84

vc′(X) O(n2) 5 30 9 155

3-Clique O(n3) 11 81 41 1510

4-Clique O(n4) 21 189 153 8673

3-Vertex Cover O(n4) 63 635 414 23845

4-Vertex Cover O(n5) 11 1223 1037 75700

Bipartite O(n+m) 11 81 57 2934

3-Colorability NP-complete 21 189 fail

Table 5: Sizes of the finite-state tree automata generated by Soguet [167, Figures 4.8, 4.9] with MONA
for graphs of clique-width 2 and 3. States is the size of the automata, nodes are the number of nodes in
the corresponding Binary Decision Diagrams (BDDs). The entry fail means the computation aborted
with “out-of-memory” errors.

adjacency relation entitled “Adj1” in Soguet’s thesis.2 As one observes, the sizes of the
resulting automata are surprisingly small. Particularly the automata for the properties
clique(X) and vc′(X) of the EMSO-definable optimization problems Maximum Clique
and Minimum Vertex Cover are very small (5 vs. 9 states). On the other hand the
automata for some properties that are trivially solvable even in general graphs cannot
be constructed anymore. Further inspection of the MSO-formulas corresponding to the
problems considered by Soguet reveals that the culprit is probably a large number of
nested quantifiers that are required to count in MSO, or that are required to express
that a set is connected (cf., Example 13). Note that in order to count, say, four distinct
neighbors, one requires four nested quantifiers.

Similar numbers were obtained by Durand with her Autowrite software tool [56, 57]
as reported in [40, 44].

Motivated by applications in knowledge representation and reasoning, Gottlob, Pich-
ler, and Wei also used MONA for the MSO to FTA-conversion and report the same state-

2For graphs of clique-width 2, Soguet also studied two alternative BDD representations for the adja-
cency relation and lists their (positive) impact on the size of the resulting automata. Numbers for graphs
of clique-width 3 are not reported. For the sake of better comparability we only quote the numbers for
the first representation here.

47

explosion problems described above [88, 87]. They also investigate in [86, 87] reasons
why MONA experiences these problems:

An analysis of the various components of our program has revealed that
MONA is the weak point of the program. In fact, the way how MONA eval-
uates an MSO-formula ϕ∗ over a tree T ∗ is very problematical (and, in a
sense, contradicts the spirit of model checking). [. . .] MONA undoubtedly
has its merits in other areas, notably in verification. However, with its cur-
rent strategy of considering the input structure as part of the formula (and,
therefore, mixing up data complexity and query complexity), MONA is not
suited for the KR & R problems studied here. [86] (and similarly in [87,
p. 127])

Consequently, they also tried a direct implementation of the MSO-to-FTA conversion,
but the state explosion problems “led to failure before we were able to feed any input
data to the program” [88, p. 4].

Therefore, at least three independent implementations (MONA, Autowrite and the
direct construction of Gottlob et al.) reveal that the size of the resulting automata
poses a problem in practical applications, which even advanced tools such as MONA or
Autowrite cannot easily handle. We therefore conclude:

(T,X) ⇒ T ′

ϕ⇒ ϕ′ ϕ′ ⇒ A
T ′

?∈ L(A)

/
Finally, we note that even the logspace-algorithm of [62] might face these problems,

since the size of the automaton is considered a constant in their work; the logarithmic
space improvement mainly concerns Bodlaender’s algorithm for constructing the tree
decomposition and the simulation of the run of the automaton in logarithmic space, all
of which are independent of the problematic automata construction.

In what follows, we will give some high-level, but nevertheless detailed exposure of the
current advances in making Courcelle’s Theorem more useful in practical applications.

5.3. Precomputed and Nondeterministic Automata

Since the power set construction for intermediate automata is problematic, Courcelle
and Durand [41, 42, 43, 40] (see also [44, Section 6.3]) suggest the following combined
approach:

1. Avoid the power set construction for determinization by avoiding quantifier alter-
nation and allowing non-deterministic FTAs, runs of which can easily be simulated.

2. Reduce the quantifier nesting depth of the formula by providing additional atomic
predicates expressing commonly used, powerful properties such as connectivity or
subset relations.

48

3. Precompile these provided predicates into small deterministic automata to avoid
large intermediate automata.

It is a standard-technique to simulate runs of a non-deterministic automata by keep-
ing track of the states the automata possibly is in. Since in each run the automaton A

must be in one of the |A| states, this simulation algorithm therefore only needs to han-
dle at most |A| states at once. This technique naturally entails a small increase of the
running time, but the space required is typically much less compared to what is needed
to construct the deterministic automaton in the first place. Note, for example, that
the power set construction does require Θ(2|A|) space, and this blow-up is not avoidable
since in general the size of the minimal deterministic automaton A

′ with L(A) = L(A′)
is |A′| = Θ(2|A|).

The simulation of non-deterministic automata naturally extends to standard opera-
tions on languages recognized by automata, particularly the intersection (for formulas
with ∧), the union (for formulas with ∨), and projection, a technique used to construct
automata for formulas with existential quantification. Complementation, however, which
is required for formulas with negation and, therefore, also universal quantification, can-
not be approached with this non-deterministic simulation technique.

Unfortunately, in most cases one cannot avoid negation or universal quantification
to express basic properties. The workaround proposed by Courcelle and Durand is to
provide a large list of atomic formulas for commonly used properties. One example for
such a basic property is Path(X,Y) expressing that X has exactly two vertices that are
linked by a path in G[Y]. Another example are Boolean Set Terms which can be used
to express properties of sets of sets that require many quantifiers but typically yield
small automata, such as X ⊆ Y for two set variables X,Y or Partition(X1, . . . ,Xm)
expressing that (X1, . . . ,Xm) is a partition of the vertex set. See [44, pp. 471ff] for a
large list of predicates for which small precompiled automata can be provided and how
they are constructed.

It can be shown [40, 44], however, that the minimal deterministic automaton decid-

ing the Connected problem via clique-width expressions has more than 22
k/2

states,
where k is the clique-width of the graphs considered. The construction presented
in [40, 44] does yield an automaton with 22

O(k)
states. Table 6.12 in [44, p. 474] lists

several examples with a similar flavor of growth. Courcelle and Durand [40] describe
another technique of using special tree annotations of the clique-width parse tree and
how they can be used to further shrink the size of the automata. For example, a non-
deterministic automaton for annotated inputs for the Connected problem has only
2O(k log k) states.

Since universal quantification poses problems due to the required negation, Courcelle
and Durand consider an existential fragment of MSO that contains only formulas of the
form ∃X1 · · · ∃Xpϕ, where ϕ is a Boolean combination of atomic formulas with free set
variables in {X1, . . . ,Xp}. The atomic formulas are from a large set of predicates for
which precomputed automata are provided by the implementation. This fragment of
MSO is rich enough to express many important graph problems such as graph partition
problems like 3-Colorability (and, more general, k-Colorability) or whether a

49

fixed graph H is a minor of the input graph.
Their approach has been implemented on top of the Autowrite software developed

by Durand [56, 57], which is written in Common Lisp and implements bottom-up tree-
automata (term-automata) and most of the standard operations on automata such as
union, intersection, determinization, minimization, and complementation. By a language
extension, this implementation is furthermore able to solve decision problems such as
Vertex Cover or Dominating Set, where the solution size is part of the input [40,
Figure 4].

Several experimental results with the implementation reported in [42, 41, 40, 44]
reveal that using the techniques described in this section do in some extend help to
construct the automata. Unfortunately, with growing clique-width, the construction of
the automata still soon causes memory problems and can no longer be done in practice.
An approach to conquer this problem is described in the next section.

5.4. On-the-fly Construction of Automata

In conclusion of the previous section, the construction of the complete automaton is
not feasible in practice since the huge number of states is beyond what we can handle
on real hardware.

What can be done? Clearly, some representation of the automaton is required in
order to simulate runs of the automaton. The natural question is if one actually needs
to keep a representation of the complete automaton in memory in order to simulate a
run on a given input. This leads to the idea to not construct the automaton before
computation, but rather construct the automaton on the fly as needed, while simulating
the run of the automaton.

Early work for graphs of bounded treewidth utilizing this idea was reported at a
Dagstuhl seminar [184] in 2001.3 White reports that the test set for the Hamiltonian
Cycle problem on graphs of bounded treewidth contains 2ww! elements, and that the
naive method to construct the corresponding tree automaton using the method of test
sets then yields an intermediate automaton with 22

ww! states (which should then be
minimized). Recall in this context that the power set construction also has exponen-
tial space requirements for the intermediate automata. Walker then proceeds to show
that one can dynamically construct the automaton on-the-fly, which avoids the expo-
nential blow-up and yields an algorithm for Hamiltonian Cycle with a running time
of only O(2ww!n). Such an on-the-fly construction of automata via the method of test
sets is also described in the Master’s thesis of Sloper [166], but we are not aware of
experiments for tree automata or graph problems.

Courcelle and Durand have extended their work described in the previous section
to the on-the-fly construction of the corresponding automata [40]. The idea of their
approach is that the transitions are no longer stored explicitly in precomputed form,
say in a table, but are rather represented implicitly as a small set of “meta-rules” from
which an algorithm can compute the transitions as needed. The transitions are therefore

3Unfortunately this work has never been published in other form.

50

computed on-the-fly while simulating the run of the automaton. The time required
to compute transitions is naturally larger than a simple table-lookup, but the space
requirements shrink significantly: Only a suitable representation of the current state has
to be kept in memory, which typically is much less than the space required to construct
the complete automaton.

Courcelle and Durand call these automata fly-automata as opposed to the classic, pre-
computed automata that they call table automata. Fly-automata have been implemented
in Autowrite, and promising experiments with this implementation are presented in [40].
For example, they compare the running times of table automata with fly-automata
and analyze the penalty on the evaluation function vs. the simpler table-lookup for
transitions. For paths Pn on n vertices (clique-width 3 if n ≥ 4) they compare the
computation times of both automata types for increasing values of n for the Connected
problem. The penalty of fly- versus table automata on these instances is an approx.
factor 4 in the running time [40, Figure 5], which is surprisingly low considering the
significantly smaller memory footprint and the improved feasibility for larger clique-
widths. The experiments furthermore show that the computation time is indeed roughly
linear with respect to n (as expected).

They also ran experiments for the 3-Colorability problem on grid graphs. While
bipartite grid graphs are trivially three-colorable, such graphs have the advantage that
it is easy to construct the corresponding graph decompositions (tree decomposition or
clique-width decomposition) of arbitrary width and graph sizes. On 6× n grids (clique-
width 8 if n ≥ 6) the running time does in fact increase linearly. They report a running
time of approx. 5000s on a 6 × 100 grid, of 12000s on a 6 × 600 grid, and of approx.
18000s for a 6× 1000 grid [40, Figure 9]. On the contrary, the classic table-automaton
could not be constructed for these graphs.

Several further experiments of the same spirit in [40] indicate feasibility of the fly-
automata approach. At the moment, the biggest limitation seems to be a lack of good
algorithms or heuristics that compute small clique-width decompositions for arbitrary
input graphs. They therefore conclude:

We did not reach any limitation using fly-automata which we tried up to
cwd = 18. We could run the automata on terms representing terms on any
graph we had a term representation for. Our problem right now is to find big
graphs with their clique-decomposition in order to perform tests. [42]

However, we note that the techniques of [40] can be adapted for graphs of bounded
tree-width, where several suitable heuristics are known. Such an extension is already
planned by Courcelle and Durand [40, p. 405], and would be of tremendous value for
practical applications.

5.5. Reduction to Monadic Datalog

A completely different approach to conquer the space problems with the FTA-to-
MSO conversion is proposed by Gottlob, Pichler, and Wei [88, 87, 149]. They describe
an automatic translation of the MSO-formula into a set of monadic Datalog predicates.

51

A Datalog program is a built from function-free, definite Horn clauses and consists of a
set of facts and a set of rules (see, e.g., [1, 31, 177]). Monadic Datalog is the fragment
of Datalog where certain predicates are required to be unary. (Monadic) Datalog has
the advantage that due to its applications in database theory it is well-studied from
a practical viewpoint and there are several fast implementations (e.g., the DLV sys-
tem [129]) that use sophisticated optimization techniques, see, e.g., those mentioned
in [88, Section 6.3] and the references therein.

It was previously known that on trees monadic Datalog has the same expressive
power as MSO [85]. Gottlob et al. show [88] how an MSO-formula for a graph G can
be translated into a monadic Datalog program for the tree decomposition of the input
graph. This conversion builds upon the well-known fact that an MSO-formula of bounded
quantifier rank q cannot distinguish two graphs iff the duplicator has a winning-strategy
in the Ehrenfeucht-Fräıssé game over q rounds (see, e.g., [60]). One can therefore define
an equivalence relation ≡MSO

q on graphs as follows: For two graphs G1 and G2, we

let G1 ≡MSO
q G2 if and only if for every MSO-formula ϕ of quantifier rank at most q

we have G1 |= ϕ ⇔ G2 |= ϕ, i.e., if no MSO-formula with bounded quantifier rank can
distinguish G1 and G2. The index of ≡MSO

q is finite but extremely large, namely growing
non-elementary in q. The authors then essentially show that each equivalence class of
≡MSO

q can be described by a set of rules in monadic Datalog. This results in a monadic
Datalog program that can be used to check whether the original input formula holds in
the input graph. The extension to counting, enumeration and optimization problems is
possible [149, 72, 73].

In the worst-case, this conversion must result in a Datalog program that has (super-)
exponential size in the original MSO-formula — recall the lower bounds for the hidden
constants discussed in Section 4.2. In fact, an algorithm that does implement the con-
struction described in [88] would be infeasible in practice even for very small values of q,
since there are simply too many equivalence classes that have to be described as Datalog
rules. However, the general approach outlined in the proof can serve as an inspiration
for the manual construction of monadic Datalog programs for specific problems. This
manual adaption has been done for several problems, including the 3-Colorability
graph problem, for the Primality problem for relational schemas or the classical SAT
problem for CNF-formulas.

The resulting programs are much smaller than the space required to construct the
corresponding tree automata, and the available highly optimized Datalog solvers can be
used to solve the problem on specific input instances. Several experiments have been
carried out by Gottlob et al. and other authors. The results are very promising and
show that the monadic Datalog approach is indeed feasible for practical applications.

For example, in [88], the authors report on experiments for the Primality problem
of relational schemas (testing if some attribute in a relational schema is part of a key).
We list their results [88, Table I] in Table 6. The monadic Datalog approach clearly
outperforms the MSO-to-FTA translation approach backed by MONA by an order of
magnitude, while maintaining the linear running time in the number of tree nodes.
MONA, in turn, soon failed early with “out-of-memory” errors. Very similar numbers

52

treewidth #attr. #func. deps. #tree nodes Mon. Datalog MONA

3 3 1 3 0.1 650

3 6 2 12 0.2 9210

3 9 3 21 0.4 17930

3 12 4 34 0.5 fail

3 21 7 69 0.8 fail

3 33 11 105 1.0 fail

3 45 15 141 1.2 fail

3 57 19 193 1.6 fail

3 69 23 229 1.8 fail

3 81 27 265 1.9 fail

3 93 31 301 2.2 fail

Table 6: Processing times in “milliseconds [sic]” for the monadic Datalog approach vs. MONA for the
Primality problem [88, Table I].

treewidth #Vars #Clauses #tree nodes Mon. Datalog MiniSat

3 5 9 24 0.04 < 10

3 31 48 195 0.2 < 10

3 347 522 2157 0.8 < 10

3 3955 5934 23793 8.1 < 10

3 32765 49149 207438 65.5 40

3 337859 506790 2120361 643.9 430

Table 7: Processing times in “milliseconds” [sic] of the monadic Datalog approach vs. MiniSat (with a
granularity of 10ms) for the SAT problem [87, Table 6].

53

are presented in [87] for the Solvability problem.
In [87], they furthermore compare their monadic Datalog approach to the well-known

open-source SAT solver MiniSat [61] for the classical SAT problem. The treewidth of an
CNF-formula is defined as the treewidth of the graph that contains vertices for clauses
and variables, and edges between a clause C and a variable x iff x occurs in C. We
list their results [87, Table 6] in Table 7. It is quite remarkable that the rather generic
monadic Datalog approach achieves running times that are comparable to those of an
highly optimized SAT solver that was specifically tuned to solve SAT instances.

Their approach has furthermore been applied to a Σp
2-complete problem in the area

of answer set programming by Jakl, Pichler, and Woltran [108] and scaled well up to
treewidth 7 and 1000 nodes in the tree decomposition. Their experiments reveal, too,
that for low treewidth the monadic Datalog approach is competitive compared to state
of-the-art systems tuned to solve such problems (in this case, DLV [129]). Another set
of experiments is reported in [107], where the monadic Datalog approach was able to
solve input instances of treewidth up to 10.

At the moment the largest drawback of the monadic Datalog approach is the lack
of a feasible automatic translation of an MSO-formula into the corresponding monadic
Datalog program. In all of the cases above, the monadic Datalog programs have been
created manually by the authors of the papers and directly encode the dynamic pro-
gramming strategy to solve the problem on the tree decomposition. Consequently, for
the manual construction of the monadic Datalog program one also needs to manually
come up with an inductive description of the problem at hand, i.e., with a dynamic pro-
gramming algorithm for the problem. In particular, additional manual work is required
to prove that this formulation is indeed correct. This requires some decent background
in dynamic programming algorithms for decomposable graphs and further proofs, see,
e.g., the proof for the monadic Datalog program for the Primality problem in [88,
p. 34–42]. Hence, the versatility of MSO that lies in the separation of problem definition
and concrete solving is lost if we consider monadic Datalog programs that describe an
inductive solution strategy for tree decompositions.

Given the promising experimental results for the manually constructed formulas, it
therefore would be of tremendous utility to have an feasible algorithm that given an
MSO-formula automatically generates a small monadic Datalog program correspond-
ing to the input formula, which can then be fed into one of the fast Datalog solvers.
One can actually observe that the manually constructed monadic Datalog programs
do somewhat resemble the MSO-formulas obtained by applying the Splitting Theo-
rem to the MSO-formula as in the top-down approach of Courcelle and Mosbah [48].
For example, the monadic Datalog rules for the 3-Colorability problem in [88, Fig-
ure 5] essentially express that if the input graph G decomposes into subgraphs G1 and
G2, then a partition R,G,B of the vertex set is a three-coloring for G if and only if
(R ∩ V (Gi), G ∩ V (Gi), B ∩ V (Gi)) is a three coloring for Gi, where i = 1, 2. This
matches what we get from applying the Splitting Theorem to the formula expressing
3-Colorability. We therefore believe that an algorithm inspired by [48] can be used
to construct the desired monadic Datalog programs. We consider this an interesting

54

direction for future work with powerful applications.

5.6. A Game-theoretic Approach

Another different approach is proposed by the authors of this survey [116, 125]. It
can be understood as a dynamic programming variant of Algorithm 2 and does not
explicitly construct a tree automaton either. It is called game-theoretic because one
can understand the recursive call tree of Algorithm 2 as the game tree (see [10]) of a
two-player pebble game called the model-checking game, cf. [100, 89, 90]. It is some-
times convenient to use such a game characterization, because several useful properties
and concepts of transition systems and pebble games, particularly bisimulation or win-
ning strategies, have been studied independently and are generally well-understood, see,
e.g., [8]. Recall, for instance, that the proof of the monadic Datalog approach [88] was
based on the Ehrenfeucht-Fräıssé game, which is closely related to the model-checking
game. In what follows, we shall avoid the game-theoretic characterization in order to
keep the presentation clean from further definitions.

As mentioned in Section 3.3.4, on general graphs the running time of Algorithm 2
is not feasible for practical applications, since each set quantification requires an enu-
meration of the 2n subsets. However, it was shown in [116] that one can use dynamic
programming on the tree decomposition to simulate runs of Algorithm 2 in a way that
for graphs of bounded treewidth the total running time remains linear in n.

This is achieved by introducing a third possible return value to Algorithm 2 that we
may call “don’t know”. This return value essentially means that the currently considered
subgraph does not provide enough information to decide whether G |= ϕ[α] (true) or
whether G 6|= ϕ[α] (false) on the input graph. A dynamic programming approach is then
used to eventually turn all don’t know states into the desired true or false output. For,
the algorithm stores all recursive calls that returned don’t know in a large table, and
revisits each such recursive call at every node of the tree decomposition, until eventually
all don’t know’s become true or false .

For bounded treewidth and a fixed formula, there is only a constant number of non-
equivalent don’t know calls that have to be stored, which is the reason why this approach
is also able to obtain linear running time. Again, this number can in general not bounded
by an elementary function, which of course cannot be avoided due to the lower bounds
discussed in Section 4.2.

However, in practice the actual number of entries that have to be stored is typically
much smaller and also heavily depends on the input graph. The game-theoretic approach
works for all of MSO, and extensions to EMSO-problems [6] as well as MSO evaluation
problems [48] are considerably straight-forward. The proof in [116] is for linear EMSO
optimization problems.

The game-theoretic approach has been implemented in C++. We evaluated its prac-
tical utility experimentally [125] and compared it to the commercial ILP solver CPLEX [50].
In many cases CPLEX is much faster, as one would expect from a highly optimized com-
mercial optimization package. CPLEX easily outperformed our approach on small to
medium sized instances and sparse graphs. On the other hand, our approach was faster

55

than CPLEX for, e.g., the Minimum Dominating Set problem on medium to large
sized grid-like graphs. This particularly stems from the fact that the running time of the
tree-width based approach does scale linearly with the graph size as stated by Courcelle’s
Theorem, which typically is not the case for a ILP-based methods.

Furthermore, the MSO-based approach can show its full strength for problems that
require to model “global” constraints such as a global connectivity constraint as in
the connected version of the Minimum Dominating Set problem. Connectivity of
the solution set can be easily expressed in MSO, cf., Example 13, but is non-trivial to
model in an ILP. For example, the ILP-formulation of [141] for Minimum Connected
Dominating Set guarantees connectivity of the solution by requiring a flow between
the nodes of the solution, and is quite tedious to generate.

In the case of the Minimum Connected Dominating Set problem, our imple-
mentation could significantly outperform CPLEX on graphs of small treewidth. For
instance, on a large input instance (673 vertices, 1445 edges, treewidth ≤ 8) that was
constructed from the Hannover urban railway network from the data available in the
OpenStreetMap project4, an optimal connected dominating set of size 319 was found
by our MSO solver in about 3761 seconds and with 299 MB of memory usage. On
the same instance, we stopped CPLEX after 20945 seconds real time computation. At
that point, the best integer feasible solution found so far was 358. Our MSO solver has
been improved further since and can now solve the same instance in about 45 seconds.
Interested readers can try it out online on the project homepage [126].

6. Beyond Treewidth

Treewidth is a width measure for sparse graphs in the sense that graphs of bounded
treewidth have only a linear number of edges: Recall from Section 2 that for a graph
G = (V,E) of treewidth k, we have |E| ≤ k|V |+ k2. For the algorithms presented in the
previous sections, dense graphs with unbounded treewidth do imply a severe, typically
exponential or even super-exponential, increase in the running time and, worse, space
requirements. Note on the other hand, that many of the aforementioned problems are
easy on complete graphs in the same way they are easy on trees. For example, Minimum
Vertex Cover,Minimum Dominating Set, and 3-Colorability are trivially solved
on such instances. This naturally bears the question when problems become easy for
dense graphs.

In what follows, we briefly survey width measures that remain small for several dense
graphs and their utility regarding the MSO Model-Checking problem. We also list
some recent results on the general complexity of the MSO approach on graphs of bounded
treewidth and related graph classes.

4http://www.openstreetmap.org/browse/relation/54023

56

6.1. Width Measures for Dense Graphs

It has been shown by Courcelle, Makowsky, and Rotics [47] that a theorem similar
to Courcelle’s Theorem for bounded treewidth can also be shown for graphs of bounded
clique-width. Clique-width, like treewidth, is a width measure for graphs, but in contrast
to treewidth, it is also small for several classes of dense graphs. This extension to dense
graphs, however, comes at a price: The set of problems to which the result applies
is strictly smaller than the set of problems for treewidth (MSO1-definable vs. MSO2-
definable).

Two other width measures have since been introduced that aim to provide algorithmic
utility for dense graphs: Rank-width and Boolean width. On undirected graphs, all three
measures are somewhat related and particularly within bounds of each other, i.e., if one
of them is bounded on some graph class, all of them are. The result of [47] therefore
directly extends to graphs of bounded rank-width and Boolean width.

Hliněný, Oum, Seese, and Gottlob [102] survey several width measures and their
algorithmic implications, particularly including clique-width and rank-width (but not
Boolean width, which has been defined afterwards). We shall therefore only briefly
cover width measures for dense graphs in the following, with a focus on the practical
aspects of the MSO Model-Checking problem for these graph classes.

6.1.1. Clique-width

We mentioned clique-width several times before, in particular since the experimental
evaluation of the automata approach by Soguet [167] (Section 5.2) and the fly-automata
approach by Courcelle and Durand (Section 5.4) have been implemented for the clique-
width measure.

The notion of clique-width has been introduced by Courcelle, Engelfriet, and Rozen-
berg [45] in terms of a graph grammar. Both, treewidth and clique-width, can be defined
in terms of graph grammars, hyperedge replacement grammars for treewidth, and vertex
replacement grammars for clique-width, cf. [44, Chapter 2] for details.

To define clique-width, we consider a set of graph operations on labeled graphs. A
labeled graph is a tuple (V,E, lab), where (V,E) is a graph and lab : V → N assigns a
label to each vertex. A p-graph is a labeled graph with labels in {1, . . . , p}. With every
graph G = (V,E) we may identify the 1-graph (V,E, lab), where lab : V → {1}.

We can now define the four graph operations that are used to define clique-width.
Fix some integer p ∈ N+.

• We let ⊙ denote the p-graph with a single vertex labeled 1.

• For a p-graph G = (V,E, lab), we let labi→j(G) be the graph G′ = (V,E, lab ′)
obtained from G by relabeling all i-labeled vertices to j, i.e.,

lab ′(v) =

{

j if lab(v) = i

lab(v) else.

57

lab1→2

add1→2

⊕

⊙ ⊙
⊕

⊙

⊕

⊙

⊕

⊙
⊕

⊙· · · · · ·

1 1

2 2

3 3

n n

...
...

Figure 5: A 2-labeled clique-width parse tree generating the complete bipartite graph Kn,n

• For a p-graph G = (V,E, lab), we let addi→j(G) be the graph obtained from G by
connecting all vertices labeled with i with those labeled with j:

addi→j(G) = (V,E ∪ { (u, v) | lab(u) = i ∧ lab(v) = j }, lab)

• For two p-graphs G1 = (V1, E1, lab1) and G2 = (V2, E2, lab2), we let G1⊕G2 be the
disjoint union G = (V,E, lab) of G1 and G2, defined via V = V1∪V2, E = E1∪E2,
and

lab(v) =

{

lab1(v) if v ∈ V1

lab2(v) if v ∈ V2

Here, we w.l.o.g. assume that V1 ∩V2 = ∅, since we can rename vertices as needed.

A p-labeled parse tree T (also called p-expression in the literature) is a finite, ordered,
rooted subcubic tree (with the root of degree at most two), such that

• all leaves of T are labeled with the ⊙ symbol;

• all internal nodes of T with one child are labeled with addi→j or labi→j, where
i, j ∈ {1, . . . , p}; and

• all internal nodes of T with two children are labeled with ⊕.

A parse tree T generates the p-graph G that is obtained by the successive leaves-to-
root application of the operators that label the nodes of T . A graph G = (V,E) has
clique-width p, if there is a p-labeled parse tree generating (V,E, lab) for some labeling
lab : V → {1, . . . , p}. A 2-labeled parse tree generating a complete bipartite graph Kn,n

is shown in Figure 5. Note that a Kn,n has treewidth n and n2 edges.
Several interesting graph classes have bounded clique-width. For example, the class of

cographs (P4-free graphs) coincides with the graphs of clique-width bounded by 2 [49],
and trees and, more generally, distance-hereditary graphs have clique-width at most
three [84]. Furthermore, if a graph has treewidth k, then it has clique-width 2k+1+1 [36].
However, just as in the case of treewidth, the clique-width grows if the graphs become
“moderately” dense. For instance, square grids with n vertices have treewidth and
clique-width Θ(

√
n).

58

Courcelle, Makowsky, and Rotics showed that on graphs of bounded clique-width
every linear EMSO1-definable problem can be solved in linear time if a p-expression
is part of the input [47]. When we use the O(|V |3) time approximation algorithm by
Oum [145] to compute a corresponding f(w)-expression, we get the following general
result for graphs of bounded clique-width:

Theorem 35 (Courcelle, Makowsky, Rotics [47], Oum [145]). Let P be an linear EMSO1-
definable optimization problem, w ∈ N an integer and f : N → N. Then one can solve
P on graphs G = (V,E) of order n := |V | and clique-width at most w in time O(n3) and
in time O(n) if an f(w)-expression is part of the input.

As a consequence, we immediately get that many well-known NP-hard problems in-
cluding the following can be solved in polynomial time on several graph classes containing
dense graphs.

Corollary 2 (Courcelle, Makowsky, Rotics [47]). On graphs of bounded clique-width,
the following problems can be solved in polynomial time: Minimum Vertex Cover
(GT1), Minimum Dominating Set (GT2), Domatic Number for fixed k (GT3), k-
Colorability for fixed k (GT4), Partition into Cliques for fixed k (GT15), Max-
imum Clique (GT19), Maximum Independent Set (GT20), and Induced Path
(GT23).

However, the utility of MSO for dense graphs comes at a price: Unless EXPTIME =
NEXPTIME, Theorem 35 cannot be extended to MSO2, even if we allow the running
time bound to be a polynomial:

Theorem 36 (Courcelle, Makowsky, Rotics [47]). If EXPTIME 6= NEXPTIME, then
there is an MSO2-definable decision problem over the class of cliques which is not solvable
in polynomial time.

As the experimental evaluation of Courcelle and Durand shows (cf., Section 5.4), algo-
rithms based on the clique-width decompositions of the input graphs are furthermore also
feasible in practical applications. A major problem for clique-width based algorithms
currently lies in the lack of efficient algorithms to compute the necessary clique-width
expressions, cf. Section 5.4. The problem of deciding whether a given input graph has
clique-width at most k when k is part of the input is NP-complete [68]. It is in P for
k = 2 [35] and for k = 3 [34], but its classification remains open for larger fixed values
of k. Johansson presented in [109] an approximation algorithm for clique-width, which
achieves an approximation ratio of 2k log |V |. Due to its dependency on |V |, this al-
gorithm cannot be used to derive the time bounds of Theorem 35. In order to design
an approximation algorithm for clique-width with an approximation ratio independent
of |V |, Oum and Seymour introduced in [146] a new width measure named rank-width.
The O(|V |3) time bound given in Theorem 35 is due to the running time of the rank-
width approximation algorithm [145], which also approximates the clique-width.

59

12

3 4

5
(

1 0 0 1
)

(

1 1 0 0
)

(

0 1 1 0
) (

0 0 1 1
)

(

1 0 0 1
)

(

1 0 0
0 1 0

)

0 1
0 0
1 0

1

2

3 4

5

Figure 6: A rank-decomposition of the C5 [81]

6.1.2. Rank-width

Rank-width was introduced by Oum and Seymour in order to study clique-width [146].
They defined rank-width as the branch-width [154] of the cut-rank function. Branch-
width and branch-decompositions were originally introduced by Robertson and Sey-
mour [154] and provide another notion of a recursive graph decomposition. A rank-
decomposition of a graph G = (V,E) is a pair (T, µ), where T is a subcubic tree
and µ : V → { t | t is a leaf of T } is a bijection. Every edge of a rank-decomposition
tree defines a cut of the graph, which is a partition of the vertex set into disjoint sets
V1, V2. With every cut (V1, V2), we can associate a |V1| × |V2|-adjacency matrix over
GF (2), where an entry ei,j = 1 iff the ith vertex of V1 is adjacent to the jth vertex of
V2. The width of a rank-decomposition is the maximum rank over all cuts induced by
its edges (the cut-rank), and the rank-width of a graph G is the minimum width over all
rank-decompositions of G. See Figure 6 for an example of a rank-decomposition. For
the exact definitions, we refer the reader to [146] or the survey [102].

The definition in terms of branch-width allows one to prove several properties of rank-
width including the fact that rank-width and cliquewidth are equivalent width measures
in the sense that a class of undirected graphs has bounded rank-width if and only if it
has bounded cliquewidth [146]. More precisely, for every (undirected) graph G, we have

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1,

where rwd(G) and cwd(G) are, respectively, the rank-width and clique-width of G.
However, this definition in terms of branch-width is not very intuitive and also not always
useful from an algorithmic point-of-view. This prompted Courcelle and Kanté [46] to
introduce an equivalent formulation of rank-width in terms of algebraic operations on
labeled graphs that are very similar to those of the clique-width operations defined in the
previous section. These operations were restated by Ganian and Hliněný [81] in terms
of labeling joins and t-labeled parse trees. A width t rank-decomposition can easily be
transformed into a t-labeled parse tree and vice versa [81]. The precise definitions of
the parse tree operations are somewhat technical and it doesn’t add much value to this
survey to restate them here. The reader interested in these notions is referred to their
definitions in [46, 81].

In [81], Ganian and Hliněný show that Myhill–Nerode type arguments for t-labeled
parse trees can be used to prove Theorem 35 directly in terms of rank-width, therefore
essentially outlining how a finite tree automaton that recognizes the parse tree can

60

be constructed. Another proof for rank-width, which is related to the game-theoretic
approach described in Section 5.6, can be found in [127]. None of these approaches has
been implemented yet, so their actual practical feasibility remains open.

As usual, all of these algorithms do require a rank-width decomposition (or a t-
labeled parse tree) as input. In order to achieve the cubic running time of Theorem 35,
we therefore depend on polynomial algorithms that compute a small rank-decomposition
for a given input graph. It is NP-hard to decide whether a graph G has rank-width at
most k when k is part of the input [101]. For fixed k, there is an O(|V |3) algorithm by
Hliněný and Oum based on matroid methods, which computes an rank-decomposition
of width k if such a rank-decomposition exists. It is, however, not feasible for practi-
cal applications. As in the case of treewidth, it suffices to use heuristics to compute
a small rank-decomposition. There are some approximation algorithms by Oum and
Seymour [147] and Oum [145] with different running times and performance guarantees,
but we are not aware of any implementations. The lack of a suitable decomposition al-
gorithm with proven practical feasibility therefore currently remains the biggest obstacle
to using rank-width based approaches in practice. This gap is hopefully closed soon once
suitable heuristics become available [12].

6.1.3. Boolean width

Boolean width is another width measure for dense graphs introduced by Bui-Xuan,
Telle, and Vatshelle [29]. It is related to rank-width in the sense that we do not use the
rank of the adjacency matrix as a measure for the cut, but rather use the number of
different neighborhoods induced by the cut. More precisely, for a cut C = (V1, V2), let

num(C) :=
∣

∣{U2 ⊆ V2 | ∃U1 ⊆ V1 ∧ U2 = N(V1) ∩ V2 }
∣

∣,

which is the number of different neighborhoods in V2 over all subsets of V1. The Boolean
dimension of C is then defined as booldim(C) := log2 |num(C)|, and the Boolean width
of a branch decomposition of G is the maximum Boolean dimension over all of its cuts.
The Boolean width of a graph G is then the minimum Boolean width over all branch-
decompositions of G.

As shown in [29], the Boolean width of an undirected graph is always polynomially
upper-bounded by its clique-width and its rank-width and is often much smaller. Since
furthermore the algorithms presented in [29] have a rather small, i.e., single-exponential,
dependency on the Boolean width, Boolean width might be a well-suited width-measure
for practical applications. Unfortunately, owing the lack of a algorithmically useful
notion of a parse tree based on graph operations as those for clique-width and rank-
width, no theorem in the spirit of Theorem 35 has been shown yet using a Boolean
width decomposition directly. The detour over a rank-width or clique-width parse trees
that is currently needed might render this approach infeasible in practice due to the
non-avoidable blow-up induced by switching width measures.

Hvidevold, Sharmin, Telle, and Vatshelle presented [104] a heuristic for Boolean
width and an experimental evaluation on a large set of graphs from the Treewidth-
LIB [175] graph library. For a large number of graphs, the best known bound on the

61

treewidth is at least twice as big as the Boolean width bound computed by their heuris-
tic. This gives hope that in future algorithms based on width measures for dense graphs
could be equally successful as those for small treewidth.

6.2. Variants of Treewidth

There are several other width measures that are related to treewidth. They typically
share the property of treewidth that MSO2-definable problems can be solved in linear
time, as opposed to the width measures for dense graphs, where this is possible for MSO1

only.
Branch-width was introduced by Robertson and Seymour [154] and is always within

a factor 1.5 of treewidth. There are a few restricted variants of treewidth that only play
a minor role nowadays, e.g., strong treewidth [162] or domino treewidth [22]. A more
commonly used restriction of treewidth is pathwidth, also introduced by Robertson and
Seymour [152]. It is defined in the same way as treewidth, but we use a path instead of
a tree. Since every path is also a tree, algorithms for tree decomposition can be used for
path-decompositions without modifications. On the other hand, algorithms that only
operate on path decompositions are significantly simpler—and often faster—than those
for tree decompositions [39, 44], since one does not need to handle the complex fusion
(gluing) operation for subgraphs. The price we pay for this is that the pathwidth is
general larger than its treewidth, up to a factor of O(log n). For example, the pathwidth
of a path is 1, but becomes Θ(log n) for trees; n×m grids have pathwidth and treewidth
min{n,m}, and every graph has pathwidth ≤ n− 1.

Courcelle introduced special treewidth [38, 39]. Special treewidth lies between path-
width and treewidth, but the corresponding automata are exponentially smaller than
those for treewidth, which is beneficial for the space-explosion problems observed in
practical applications. No algorithms that construct small special tree decompositions
are known yet.

6.3. Avoiding the non-elementary blow-up

A recent paper by Lampis [123] initiated the quest for graph parameters for which
the non-elementary blow-up of the constants in the running time of algorithms solving
the MSO Model-Checking problem can be avoided.

Lampis [123] considers graphs that admit a small vertex cover or a small maxi-
mum-leaf spanning tree. Both measures are typically larger than the treewidth of a
graph and can be hence be understood as restrictions of treewidth, i.e., the class of
bounded vertex cover number k is strictly contained in the class of graphs of bounded
treewidth k. Lampis shows that for these graph classes and MSO1-definable properties,
the non-elementary lower bounds shown by Frick and Grohe [76] can be avoided and
replaced by a double-exponential dependency on k.

Ganian [79] introduces the notion of a twin cover, which is defined similar to a vertex-
cover but remains small on several dense graphs. The corresponding twin cover number
of a graph lays between the size of its minimal vertex-cover and its clique-width and rank-
width. Ganian proves that Lampis’ result can be generalized from vertex cover to twin

62

cover. This has been further generalized to graphs of bounded tree-depth and bounded
shrub-depth by Gajarský and Hlinený [78]. Tree-depth was introduced by Nešetřil and
Ossona de Mendez in [142]; shrub-depth is further studied in [80].

6.4. Lower Bounds

From a more theoretically motivated standpoint, we may also ask on how much we
can extend Courcelle’s Theorem beyond graphs of bounded treewidth. In a series of
papers, Kreutzer [118, 120] and Kreutzer and Tazari [122, 121] gave a corresponding
complexity lower-bound for Courcelle’s Theorem. Roughly speaking, they show that,
modulo a certain complexity-theoretical assumption (the Exponential Time Hypothe-
sis [106]), the MSO Model-Checking problem cannot be solved in time O(poly(n))
on C, where poly(n) is a polynomial whose degree depends on the input formula ϕ, and
C is a class of graphs that has strongly poly-logarithmically unbounded treewidth and is
either closed under coloring [120, 122], or under taking subgraphs [121]. A related re-
sult for the MSO1 Model-Checking problem was proven in [82]. We note that there
are, indeed, classes of strongly poly-logarithmically unbounded treewidth that admit
polynomial time algorithms for the MSO1 Model-Checking problem, e.g., classes of
bounded clique-width or rank-width, but those are not closed under taking subgraphs.

7. Conclusions

For a long time, Courcelle’s Theorem was used only as a theoretical tool to establish
that linear-time algorithms exist for some problems and deemed useless in practical
situations. An aim of this survey was to show that it is indeed possible to design a
generic algorithm based on this meta-theorem that actually works in practice.

While it is still true that hand-crafted algorithms, tailored to specific problems, are
much faster than the generic approaches presented in this survey, it is important to note
that coming up with an error-free implementation of an algorithm specifically designed
for a particular (MSO-expressible) problem is time-consuming. One can often solve such
problems much faster (i.e., total time including development) using one of the generic
tools presented in this survey.

Today, optimization suites like CPLEX or Gurobi often outperform hand-crafted or
manually implemented algorithms to the extent that they have become the software
of choice for solving many real world optimization problems. There is hope that with
more research, generic tools for MSO-expressible problems will be a weapon of choice in
solving such problems.

7.1. Further Reading

For the reader who is interested in the theoretical foundations of this area, we suggest
the following introductory surveys: [92, 119, 93, 133, 102]. Monographs that give an
in-depth exposition of algorithms for the MSO Model-Checking problem from an
algorithmic viewpoint are [70, 44, 55].

63

7.2. Acknowledgements

We thank Stephan Kreutzer for pointing out a mistake in Example 28.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] K. A. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth, and
well-quasiordering. In Proc. of Graph Structure Theory, Contemporary Mathemat-
ics 147, pages 539–564. American Mathematical Society, 1991.

[3] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002.

[4] S. Arnborg. Efficient algorithms for combinatorial problems with bounded decom-
posability - a survey. BIT, 25(1):2–23, 1985.

[5] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[6] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, 1991.

[7] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Appl. Math., 23(1):11–24, 1989.

[8] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[9] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business processes with
BP-QL. Inf. Syst., 33(6):477–507, 2008.

[10] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathe-
matical Plays. A.K. Peters, 1982.

[11] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal
subgraphs of decomposable graphs. J. Algorithms, 8(2):216–235, 1987.

[12] M. Beyß. Fast algorithm for rank-width. In Proceedings of the 8th Doctoral Work-
shop on Mathematical and Engineering Methods in Computer Science (MEMICS).
Springer, 2012. To appear.

[13] L. W. Bieneke and R. E. Pippert. The enumeration of labeled 2-trees. Notices of
the American Mathematical Society, 15:384, 1968.

64

[14] L. W. Bieneke and R. E. Pippert. The number of labeled k-dimensional trees.
Journal of Combinatorial Theory, 6:200–205, 1969.

[15] H. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal, 51(3):255–269, 2008.

[16] H. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper bounds.
Inf. Comput., 208(3):259–275, 2010.

[17] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Proceedings of the 15th International Colloquium on Automata, Languages, and
Programming (ICALP), number 317 in Lecture Notes in Computer Science, pages
105–118. Springer, 1988.

[18] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21,
1993.

[19] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[20] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In I. P. and
P. Ruzicka, editors, Proceedings of the 22nd Conference on Mathematical Founda-
tions of Computer Science (MFCS), volume 1295 of Lecture Notes in Computer
Science, pages 19–36. Springer, 1997.

[21] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Comput. Sci., 209:1–45, 1998.

[22] H. L. Bodlaender and J. Engelfriet. Domino treewidth. J. Algorithms, 24(1):94–
123, 1997.

[23] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (Meta) Kernelization. In Proceedings of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS) [105], pages 629–638.

[24] H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations II. Lower
bounds. Inf. Comput., 209(7):1103–1119, 2011.

[25] G. Boolos and J. Burgess. Computability and Logic. Cambridge University Press,
4th edition, 2002.

[26] R. B. Borie. Generation of polynomial-time algorithms for some optimization
problems on tree-decomposable graphs. Algorithmica, 14(2):123–137, 1995.

[27] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic Generation of Linear-
Time Algorithms from Predicate Calculus Descriptions of Problems on Recursively
Constructed Graph Families. Algorithmica, 7(1):555–581, 1992.

65

[28] J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[29] B. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs. Theor.
Comput. Sci., 412(39):5187–5204, 2011.

[30] B. Burgstaller, J. Blieberger, and B. Scholz. On the tree width of Ada programs.
In 9th Ada-Europe International Conference on Reliable Software Technologies,
volume 3063 of Lecture Notes in Computer Science, pages 78–90. Springer, 2004.

[31] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

[32] M. Charikar, editor. Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2010.

[33] K. J. Compton and C. W. Henson. A uniform method for proving lower bounds on
the computational complexity of logical theories. Ann. Pure Appl. Logic, 48(1):1–
79, 1990.

[34] D. G. Corneil, M. Habib, J.-M. Lanlignel, B. A. Reed, and U. Rotics. Polynomial-
time recognition of clique-width ≤ 3 graphs. Discrete Applied Mathematics,
160(6):834–865, 2012.

[35] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for
cographs. SIAM J. Comput., 14(4):926–934, 1985.

[36] D. G. Corneil and U. Rotics. On the relationship between clique-width and tree-
width. SIAM J. Comput., 34(4):825–847, 2005.

[37] B. Courcelle. The Monadic Second-Order Theory of Graphs. I. Recognizable Sets
of Finite graphs. Information and Computation, 85:12–75, 1990.

[38] B. Courcelle. Special tree-width and the verification of monadic second-order graph
properties. In Proceedings of the 30th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), volume 8 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 13–29, Dagstuhl, Germany,
2010. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[39] B. Courcelle. On the model-checking of monadic second-order formulas with edge
set quantifications. Discrete Applied Mathematics, 160(6):866–887, 2012.

[40] B. Courcelle and I. Durand. Automata for the verification of monadic second-order
graph properties. J. Applied Logic, 10(4):368–409, 2012.

[41] B. Courcelle and I. A. Durand. Tractable constructions of finite automata from
monadic second-order formulas, 2010. Presented at Logical Approaches to Barriers
in Computing and Complexity, Greifswald, Germany.

66

[42] B. Courcelle and I. A. Durand. Verifying monadic second-order graph properties
with tree automata. In 3rd European Lisp Symposium, pages 7–21, 2010. Informal
proceedings edited by C. Rhodes.

[43] B. Courcelle and I. A. Durand. Fly-automata, their properties and applications.
In Implementation and Application of Automata - 16th International Conference,
CIAA 2011, volume 6807 of Lecture Notes in Computer Science, pages 264–272.
Springer, 2011.

[44] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic:
A Language Theoretic Approach. Number 138 in Encyclopedia of Mathematics
and its Applications. Cambridge University Press, June 2012.

[45] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph gram-
mars. Journal of Computer and System Sciences, 46(2):218–270, 1993.

[46] B. Courcelle and M. M. Kanté. Graph operations characterizing rank-width. Dis-
crete Applied Mathematics, 157(4):627–640, 2009.

[47] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimiza-
tion problems on graphs of bounded clique width. Theory of Computing Systems,
33:125–150, 2000.

[48] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci., 109(1-2):49–82, 1993.

[49] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000.

[50] IBM ILOG CPLEX Optimizer, version 12.4.0.0. http://www-01.ibm.com/

software/integration/optimization/cplex-optimization-studio/. Visited
2012-09-17.

[51] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. In Proceedings of the 52nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 150–159. IEEE Computer Society, 2011.

[52] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Proceedings
of the 22 Annual IEEE Symposium on Logic in Computer Science (LICS), pages
270–279. IEEE Computer Society, 2007.

[53] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, 4th edition, 2010.

[54] J. Doner. Tree acceptors and some of their applications. Journal of Computer and
System Sciences, 4:406–451, October 1970.

[55] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

67

[56] I. Durand. Autowrite: A tool for checking properties of term rewriting systems.
In S. Tison, editor, Proceedings of the 13th International Conference on Rewriting
Techniques and Applications (RTA), volume 2378 of Lecture Notes in Computer
Science, pages 371–375. Springer, 2002.

[57] I. Durand. A tool for term rewrite systems and tree automata. Electr. Notes
Theor. Comput. Sci., 124(2):29–49, 2005.

[58] C. Dürr and T. Wilke, editors. Proceedings of the 29th Symposium on Theoret-
ical Aspects of Computer Science (STACS), volume 14 of Leibniz International
Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2012. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[59] Z. Dvorak, D. Král, and R. Thomas. Deciding first-order properties for sparse
graphs. In Trevisan [176], pages 133–142.

[60] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999.

[61] N. Een and N. Sörensson. The MiniSat page. http://minisat.se. Visited 2012-
04-11.

[62] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In Trevisan [176], pages 143–152.

[63] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. Electronic Colloquium on Computational Complexity
(ECCC), 17:62, 2010.

[64] M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic Meta Theorems for Circuit
Classes of Constant and Logarithmic Depth. In Dürr and Wilke [58], pages 66–77.

[65] C. Elgot. Decision problems of finite-automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–51, 1961.

[66] H. Enderton. A mathematical introduction to logic. Academic Press, 2nd edition,
2001.

[67] S. Feferman and R. Vaught. The first order properties of algebraic systems. Fund.
Math, 47:57–103, 1959.

[68] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-
complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

[69] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. J.
ACM, 49(6):716–752, 2002.

[70] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

68

[71] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality
and kernels. In Charikar [32], pages 503–510.

[72] E. Foustoucos and L. Kalantzi. The monadic second-order logic evaluation prob-
lem on finite colored trees: a database-theoretic approach. Fundam. Inform.,
92(3):193–231, 2009.

[73] E. Foustoucos and L. Kalantzi. Automata-theoretic and datalog-
based solutions of monadic second-order logic evaluation problems
over structures of bounded-treewidth, 2011. Techreport. Available at
http://nemertes.lis.upatras.gr/jspui/handle/10889/4327.

[74] M. Frick. Easy Instances for Model Checking. PhD thesis, Universität Freiburg,
2001.

[75] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184–1206, 2001.

[76] M. Frick and M. Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic, 130(1–3):3–31, 2004.

[77] H. Gaifman. On local and non-local properties. In Proceedings of the Herbrand
Symposium, Logic Colloquium ’81. North-Holland, 1982.

[78] J. Gajarský and P. Hlinený. Deciding graph MSO properties: Has it all been told
already? CoRR, abs/1204.5194, 2012.

[79] R. Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In
Marx and Rossmanith [135], pages 259–271.

[80] R. Ganian, P. Hlinený, J. Nesetril, J. Obdrzálek, P. O. de Mendez, and R. Ramadu-
rai. When trees grow low: Shrubs and fast MSO1. In B. Rovan, V. Sassone, and
P. Widmayer, editors, Proceedings of the 37th Conference on Mathematical Foun-
dations of Computer Science (MFCS), number 7464 in Lecture Notes in Computer
Science, pages 419–430. Springer, 2012.

[81] R. Ganian and P. Hliněný. On parse trees and Myhill–Nerode–type tools for han-
dling graphs of bounded rank-width. Discrete Applied Mathematics, 158(7):851–
867, 2010.

[82] R. Ganian, P. Hliněný, A. Langer, J. Obdrzálek, P. Rossmanith, and S. Sikdar.
Lower bounds on the complexity of MSO1 model-checking. In Dürr and Wilke
[58], pages 326–337.

[83] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco, 1979.

[84] M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci., 11(3):423–443, 2000.

69

[85] G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for web information extraction. J. ACM, 51(1):74–113, 2004.

[86] G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. In Proc. of AAAI 2006, pages 250–256.
AAAI Press, 2006.

[87] G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell., 174(1):105–132, 2010.

[88] G. Gottlob, R. Pichler, and F. Wei. Monadic datalog over finite structures of
bounded treewidth. ACM Trans. Comput. Logic, 12(1):3:1–3:48, 2010.

[89] E. Grädel. Finite model theory and descriptive complexity. In Finite Model Theory
and Its Applications, pages 125–230. Springer, 2007.

[90] E. Grädel. Back and forth between logics and games. In K. R. Apt and E. Grädel,
editors, Lectures in Game Theory for Computer Scientists, pages 99–145. Cam-
bridge University Press, 2011.

[91] M. Grohe. Descriptive and parameterized complexity. In J. Flum and
M. Rodŕıguez-Artalejo, editors, Proceedings of the 13th international Workshop
on Computer Science Logic (CSL), number 1683 in Lecture Notes in Computer
Science, pages 14–31. Springer, 1999.

[92] M. Grohe. Logic, graphs, and algorithms. In J. Flum, E. Grädel, and T. Wilke,
editors, Logic and Automata: History and Perspectives, pages 357–422. Amsterdam
University Press, Amsterdam, 2007.

[93] M. Grohe and S. Kreutzer. Methods for algorithmic meta-theorems. In Model
Theoretic Methods in Finite Combinatorics, volume 588 of Contemporary Mathe-
matics. American Mathematical Society, 2011.

[94] Y. Gurevich. Modest Theory of Short Chains. I. J. Symb. Log., 44(4):481–490,
1979.

[95] J. Gustedt, O. A. Mæhle, and J. A. Telle. The treewidth of Java programs. In
D. M. Mount and C. Stein, editors, ALENEX, volume 2409 of Lecture Notes in
Computer Science, pages 86–97. Springer, 2002.

[96] R. Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[97] W. Hanf. Model-theoretic methods in the study of elementary logic. In Theory of
Models (Proc. 1963 Internat. Sympos., Berkeley), pages 132–145. North-Holland,
1965.

[98] S. Hedetniemi. References on partial k-trees. Discrete Applied Mathematics,
54:281–290, 1994.

70

[99] S. T. Hedetniemi, A. Proskurowski, and S. Arnborg. Bibliography on par-
tial k-trees. http://liinwww.ira.uka.de/bibliography/Theory/partial.k.

trees.html, 2012. Visited 2012-03-28.

[100] J. Hintikka. Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, 1973.

[101] P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition.
SIAM J. Comput., 38:1012–1032, 2008.

[102] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-
width and their applications. Comput. J., 51(3):326–362, 2008.

[103] W. Hohberg and R. Reischuk. A framework to algorithms for optimization prob-
lems on graphs. Technical report, Technische Hochschule Darmstadt, Germany,
1990.

[104] E. M. Hvidevold, S. Sharmin, J. A. Telle, and M. Vatshelle. Finding good decom-
positions for dynamic programming on dense graphs. In Marx and Rossmanith
[135], pages 219–231.

[105] IEEE Computer Society. Proceedings of the 50th IEEE Symposium on Foundations
of Computer Science (FOCS), 2009.

[106] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[107] M. Jakl, R. Pichler, S. Rümmele, and S. Woltran. Fast counting with bounded
treewidth. In Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes in
Computer Science, pages 436–450. Springer, 2008.

[108] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded
treewidth. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, pages 816–822, 2009.

[109] Ö. Johansson. log n-approximative NLCk-decomposition in o(n2k+1) time. In WG,
volume 2204 of Lecture Notes in Computer Science, pages 229–240. Springer, 2001.

[110] D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms,
6(3):434–451, 1985.

[111] S. Kepser. Querying linguistic treebanks with monadic second-order logic in linear
time. Journal of Logic, Language and Information, 13(4):457–470, 2004.

[112] S. Kepser. Using MONA for querying linguistic treebanks. In Proceedings of
HLT/EMNLP 2005. The Association for Computational Linguistics, 2005.

71

[113] S. Khuller, S. G. Mitchell, and V. V. Vazirani. Processor efficient parallel algo-
rithms for the two disjoint paths problem and for finding a Kuratowski homeo-
morph. SIAM J. Comput., 21(3):486–506, 1992.

[114] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS,
Dept. of Comp. Sc., University of Aarhus, January 2001. Available from
http://www.brics.dk/mona/.

[115] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA Implementation Secrets.
In Proc. of CIAA00, pages 182–194. Springer-Verlag, 2001.

[116] J. Kneis, A. Langer, and P. Rossmanith. Courcelle’s Theorem – a game-theoretic
approach. Discrete Optimization, 8(4):568–594, 2011.

[117] E. Kranakis, P. Penna, K. Schlude, D. Taylor, and P. Widmayer. Improving
customer proximity to railway stations. In Proceedings of the 5th Italian Conference
on Algorithms and Complexity, volume 2653 of Lecture Notes in Computer Science,
pages 264–276. Springer-Verlag, 2003.

[118] S. Kreutzer. On the parameterised intractability of monadic second-order logic. In
Proceedings of the 23rd international Workshop on Computer Science Logic (CSL),
number 5771 in Lecture Notes in Computer Science, pages 348–363. Springer, 2009.

[119] S. Kreutzer. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory,
number 379 in London Mathematical Society Lecture Notes. Cambridge University
Press, 2011.

[120] S. Kreutzer. On the parameterized intractability of monadic second-order logic.
Logical Methods in Computer Science, 8(1), 2012.

[121] S. Kreutzer and S. Tazari. Lower bounds for the complexity of monadic second-
order logic. In Proceedings of LICS’10, pages 189–198, 2010.

[122] S. Kreutzer and S. Tazari. On brambles, grid-like minors, and parameterized
intractability of monadic second-order logic. In Charikar [32], pages 354–364.

[123] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
2011. To appear.

[124] A. Langer. Fast Algorithms for Decomposable Graphs. PhD thesis, RWTH Aachen
University, 2013.

[125] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Evaluation of an MSO-solver.
In D. A. Bader and P. Mutzel, editors, Proceedings of ALENEX’12, pages 55–63.
Society for Industrial and Applied Mathematics, 2012.

[126] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Sequoia homepage.
http://sequoia.informatik.rwth-aachen.de/sequoia/, 2012. Visited 2012-
09-16.

72

[127] A. Langer, P. Rossmanith, and S. Sikdar. Linear-time algorithms for graphs of
bounded rankwidth: A fresh look using game theory (extended abstract). In
TAMC’11, volume 6648 of LNCS, pages 505–516. Springer, 2011.

[128] A. S. LaPaugh. Recontamination does not help to search a graph. J. ACM,
40(2):224–245, 1993.

[129] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7(3):499–562, 2006.

[130] C. Liu. Tree Decomposable Models for Efficient Bioinformatics Algorithms. PhD
thesis, University of Georgia, Athens, GA, USA, 2006.

[131] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized
problems. In D. Randall, editor, Proceedings of the 22nd ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 760–776. SIAM, 2011.

[132] S. Mahajan and J. G. Peters. Regularity and locality in k-terminal graphs. Disc.
Appl. Math., 54:229–250, 1994.

[133] J. A. Makowsky. Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure
Appl. Logic, 126(1-3):159–213, 2004.

[134] M. F. Mammana, S. Mecke, and D. Wagner. The station location problem on two
intersecting lines. Electr. Notes Theor. Comput. Sci., 92:52–64, 2004.

[135] D. Marx and P. Rossmanith, editors. Proceedings of the 6th International Work-
shop on Parameterized and Exact Computation (IWPEC), number 7112 in Lecture
Notes in Computer Science. Springer, 2011.

[136] H. Maryns. On the implementation of tree automata: Limitations of the naive
approach. In Proc. 5th Int. Treebanks and Linguistic Theories Conference (TLT
2006), pages 235–246, 2006.

[137] C. McDiarmid and B. A. Reed. Channel assignment on graphs of bounded tree-
width. Discrete Mathematics, 273(1-3):183–192, 2003.

[138] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, 4th edition,
1997.

[139] P. B. Miltersen, J. Radhakrishnan, and I. Wegener. On converting CNF to DNF.
Theor. Comput. Sci., 347(1-2):325–335, 2005.

[140] L. S. Moonen and F. C. R. Spieksma. Exact algorithms for a loading problem with
bounded clique width. INFORMS Journal on Computing, 18(4):455–465, 2006.

73

[141] M. Morgan and V. Grout. Finding optimal solutions to backbone minimisation
problems using mixed integer programming. In Proceedings of the 7th International
Network Conference (INC 2008), pages 53–64. University of Plymouth, 2008.

[142] J. Nešetřil and P. O. de Mendez. Tree-depth, subgraph coloring and homomor-
phism bounds. European J. Combin., 27(6):1024–1041, 2006.

[143] J. Nešetřil and P. O. de Mendez. Sparsity: Graphs, Structures, and Algorithms,
volume 28 of Algorithms and Combinatorics. Springer, 2012.

[144] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[145] S. Oum. Approximating rank-width and clique-width quickly. ACM Transactions
on Algorithms, 5(1), 2008.

[146] S. Oum and P. D. Seymour. Approximating clique-width and branch-width. Jour-
nal of Combinatorial Theory Series B, 96(4):514–528, 2006.

[147] S. Oum and P. D. Seymour. Testing branch-width. Journal of Combinatorial
Theory, Series B, 97(3):385–393, 2007.

[148] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. J. Comput. Syst. Sci., 43:425–440, 1991.

[149] R. Pichler. Exploiting bounded treewidth with datalog (a survey). In Datalog
Reloaded - First International Workshop, volume 6702 of Lecture Notes in Com-
puter Science, pages 88–105. Springer, 2011.

[150] M. O. Rabin. A simple method for undecidability proofs and some applications.
In Y. Bar-Hillel, editor, Logic, Methodology and Philosophy of Sciences, volume 1,
pages 58–68. North-Holland, Amsterdam, 1964.

[151] K. Reinhardt. The complexity of translating logic to finite automata. In Automata,
logics, and infinite games, pages 231–238. Springer, 2002.

[152] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal
on Combinatorial Theory Series B, 35:39–61, 1983.

[153] N. Robertson and P. D. Seymour. Graph minors II. Algorithmic aspects of tree-
width. Journal of Algorithms, 7:309–322, 1986.

[154] N. Robertson and P. D. Seymour. Graph minors X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52:153–190, 1991.

[155] N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

74

[156] H. Röhrig. Tree decomposition: a feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1998.

[157] D. J. Rose. On simple characterizations of k-trees. Discrete Mathematics, 7(3-
4):317–322, 1974.

[158] R. M. Sainsbury. Logical Forms: an introduction to philosophical logic. John Wiley
& Sons, 2nd edition, 2000.

[159] P. Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR,
Berlin, Germany, 1989.

[160] P. Scheffler and D. Seese. A combinatorial and logical approach to linear-time
computability. In EUROCAL’87, volume 378 of LNCS, pages 379–380, 1989.

[161] U. Schöning. Logik für Informatiker. Spektrum, Akad. Verlag, Heidelberg, 5
edition, 2000.

[162] D. Seese. Tree-partite graphs and the complexity of algorithms. In Proceedings
of the 5th Conference on Fundamentals of Computation Theory, volume 199 of
Lecture Notes in Computer Science, pages 412–421. Springer, 1985.

[163] D. Seese. Linear time computable problems and first-order descriptions. Mathe-
matical Structures in Computer Science, 6(6):505–526, 1996.

[164] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.

[165] J. R. Shoenfield. Mathematical Logic. A K Peters, 2nd edition, 2001.

[166] C. Sloper. Parameterized complexity and the method of test sets. Master’s thesis,
University of Bergen, Norway, 2001.

[167] D. Soguet. Génération automatique d’algorithmes linéaires. Doctoral dissertation,
University Paris-Sud, 2008.

[168] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976.

[169] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and
Logic. PhD thesis, Massachusetts Institute of Technology, 1974. Available at
http://dspace.mit.edu/handle/1721.1/15540.

[170] K. Takamizawa, T. Nishizeki, and N. Saito. Combinatorial problems on series-
parallel graphs. Discrete Applied Mathematics, 3(1):75 – 76, 1981.

[171] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combi-
natorial problems on series-parallel graphs. J. ACM, 29(3):623–641, 1982.

75

[172] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

[173] W. Thomas. Languages, automata, and logic, pages 389–455. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[174] M. Thorup. All structured programs have small tree-width and good register
allocation. Inf. Comput., 142(2):159–181, 1998.

[175] TreewidthLIB. http://www.cs.uu.nl/research/projects/treewidthlib/,
2012. Visited 2012-09-16.

[176] L. Trevisan, editor. Proceedings of the 51st IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society, 2010.

[177] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press, 1988.

[178] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J.
Comput., 8:410–421, 1979.

[179] M. van den Nest, A. Miyake, W. Dür, and H. Briegel. Universal resources for
measurement-based quantum computation. Phys. Rev. Lett., 97(15):150504, 2006.

[180] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor, Algorithms and
Complexity, volume A of Handbook of Theoretical Computer Science, pages 527–
631. Elsevier, 1990.

[181] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In ESA, number
5757 in Lecture Notes in Computer Science, pages 566–577. Springer, 2009.

[182] D. Wagner. Algorithms and models for railway optimization. In Proceedings of
Workshop on Algorithms and Data Structures, volume 2748 of Lecture Notes in
Computer Science, pages 198–206. Springer, 2003.

[183] M. Weyer. Modifizierte parametrische Komplexitätstheorie. PhD thesis, Universität
Freiburg, 2008. In German.

[184] W. M. White. Deciding hamiltonicity in graphs of bounded treewidth. In
R. G. Downey, M. R. Fellows, R. Niedermeier, and P. Rossmanith, editors,
Parameterized Complexity - Dagstuhl-Seminar-Report 316. 2001. Available at
http://www.dagstuhl.de/Reports/01/01311.pdf.

[185] T. Wimer. Linear algorithms on k-terminal graphs. PhD thesis, Clemson Univer-
sity, Clemson, SC, USA, 1987.

76

[186] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. A methodology for constructing
linear graph algorithms. Congr. Numer., 50:43–60, 1985.

[187] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):22–33, 1976.

77

	Introduction
	Notation and Problems

	Treewidth and tree decompositions
	Computing Tree Decompositions

	Logic and Graphs
	Propositional Logic
	First-order Logic
	FO Model-Checking

	MSO Logic
	MSO-definable Properties and Graph Problems
	Extended MSO
	MSO and Semiring Homomorphisms
	MSO Model-Checking

	Courcelle's Theorem for Treewidth
	Proving Courcelle's Theorem
	Alternative Proofs of Courcelle's Theorem

	On hidden Constants

	Courcelle's Theorem in Practice
	Not implemented or no results known
	Negative results and problems.
	Precomputed and Nondeterministic Automata
	On-the-fly Construction of Automata
	Reduction to Monadic Datalog
	A Game-theoretic Approach

	Beyond Treewidth
	Width Measures for Dense Graphs
	Clique-width
	Rank-width
	Boolean width

	Variants of Treewidth
	Avoiding the non-elementary blow-up
	Lower Bounds

	Conclusions
	Further Reading
	Acknowledgements

