Computing Treedepth

Felix Reidl, Peter Rossmanith, **Fernando Sánchez Villaamil** Somnath Sikdar

RWTH Aachen

March 14, 2014

Fernando Sánchez Villaamil (RWTH)

Computing Treedepth

March 14, 2014 1 / 38

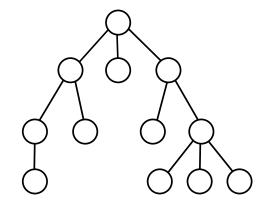
3

- 4 同 6 4 日 6 4 日 6

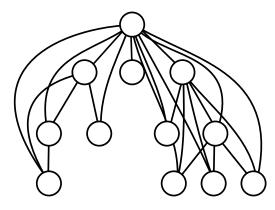
Treedepth is a width measure.

3

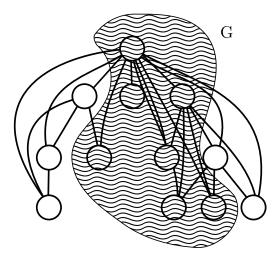
イロト イヨト イヨト イヨト



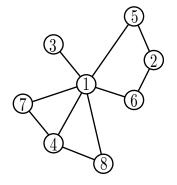
・ロト ・四ト ・ヨト ・ヨト



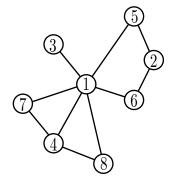
◆□> ◆圖> ◆臣> ◆臣> □臣

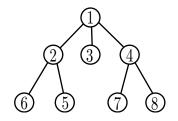


▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A(で)



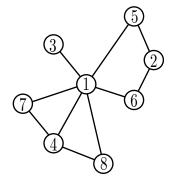
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

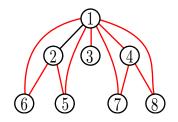




<ロ> (日) (日) (日) (日) (日)

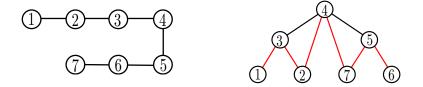
3





◆□→ ◆圖→ ◆国→ ◆国→

3



Treedepth $t \rightarrow Maximal path length 2^t - 1$.

Fernando Sánchez Villaamil (RWTH)

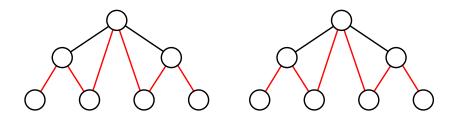
Computing Treedepth

March 14, 2014 5 / 38

3

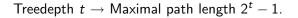
イロト イヨト イヨト イヨト

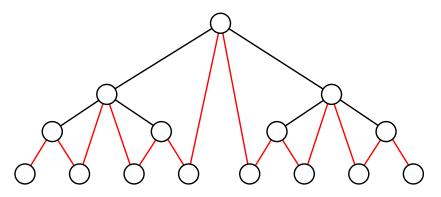
Treedepth $t \rightarrow \text{Maximal path length } 2^t - 1$.



(日) (同) (三) (三)

э





3

Definition (Treedepth decomposition)

A treedepth decomposition of a graph G is a rooted forest F such that $V(G) \subseteq V(F)$ and $E(G) \subseteq E(clos(F))$.

Definition (Treedepth)

The treedepth td(G) of a graph G is the minimum height of any treedepth decomposition of G.

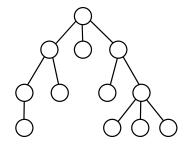
過 ト イヨ ト イヨト

Equivalent notions

A graph G has treedepth at most t if and only if:

- G is a subgraph the closure of a tree (forest) of height t
- G is the subgraph of a trivially perfect graph with clique size at most t
- G has a centered coloring with t colors
- G has a ranked coloring with t colors

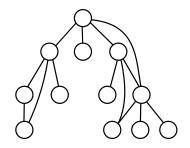
A DFS is a Treedepth decomposition



3

Image: A matrix and a matrix

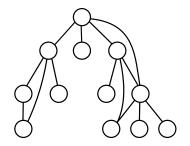
A DFS is a Treedepth decomposition



3

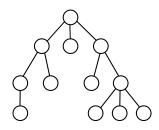
Image: A math a math

A DFS is a Treedepth decomposition



Treedepth $t \Rightarrow$ Maximal path length $2^t - 1 \Rightarrow 2^t$ -approximation

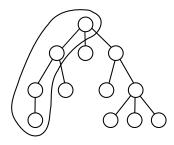
3



э

→

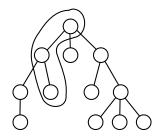
・ロト ・回ト ・ヨト



э

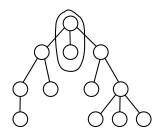
→

・ロト ・回ト ・ヨト



э

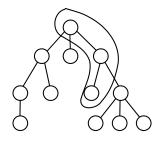
イロト イヨト イヨト イヨト



э

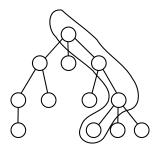
→

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



э

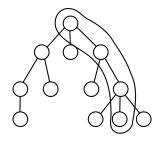
イロト イヨト イヨト イヨト



э

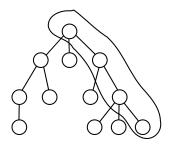
→

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



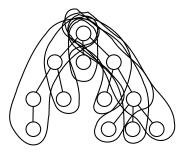
э

イロト イヨト イヨト イヨト



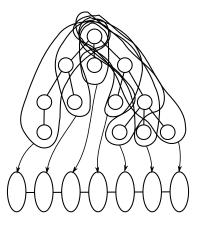
э

イロト イヨト イヨト イヨト



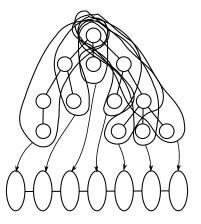
э

<ロ> (日) (日) (日) (日) (日)



3

イロト イヨト イヨト イヨト



 $\mathsf{tw}(G) \leq \mathsf{pw}(G) \leq \mathsf{td}(G) - 1$

Treedepth $t \Rightarrow$ Path decomposition of width $2^t - 2$

3

イロト イポト イヨト イヨト

Known ways to compute the treedepth of a graph:

- In $f(t) \cdot n^3$ time by Robertson and Seymour.
- $\mathsf{tw}(G) \leq \mathsf{td}(G) 1 \Rightarrow \mathsf{By Courcelle's Theorem 2^{2^{2^{-1}}}}$ • n.
- Algorithm by Bodlaender et. al. with running time $2^{O(w^2t)} \cdot n^2$.

- 4 同 6 4 日 6 4 日 6

Known ways to compute the treedepth of a graph:

• In $f(t) \cdot n^3$ time by Robertson and Seymour.

•
$$\mathbf{tw}(G) \leq \mathbf{td}(G) - 1 \Rightarrow \mathsf{By Courcelle's Theorem 2^{2^{2^{-}}}} \cdot n.$$

• Algorithm by Bodlaender et. al. with running time $2^{O(w^2t)} \cdot n^2$.

Problem

Is there a simple linear time algorithm to check $td(G) \le t$ for fixed t?

< 回 > < 三 > < 三 >

t

Our results:

- A (relatively) simple direct algorithm in time $2^{2^{O(t)}} \cdot n$.
- A fast algorithm in time $2^{O(t^2)} \cdot n$.

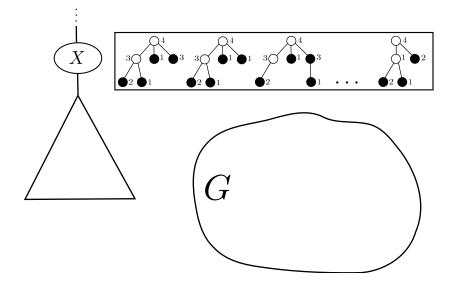
3

(a)

Our results:

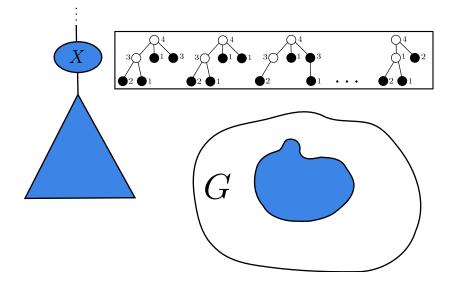
- A (relatively) simple direct algorithm in time $2^{2^{O(t)}} \cdot n$.
- A fast algorithm in time $2^{O(t^2)} \cdot n$.

Both results follow from an algorithm on tree decompositions which runs in time $2^{O(wt)} \cdot n$.



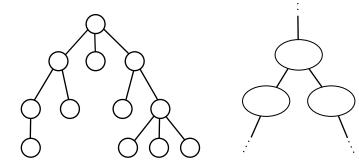
- 2

・ロト ・四ト ・ヨト ・ヨト

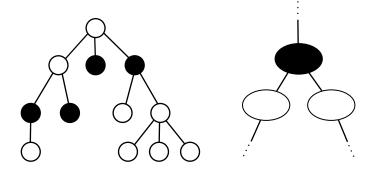


E 990

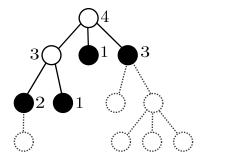
・ロト ・四ト ・ヨト ・ヨト

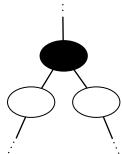


▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

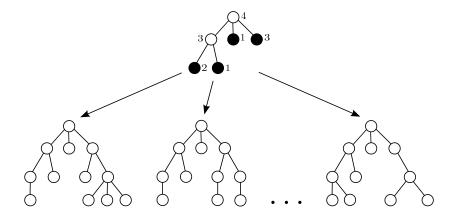




ヘロト 人間 と 人間 と 人間 と

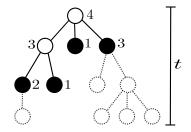
- 2

Algorithm



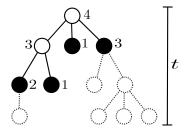
3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



- 2

・ロト ・四ト ・ヨト ・ヨト



Any partial decomposition has less than wt nodes.

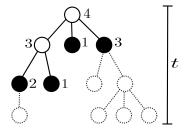
Fernando Sánchez Villaamil (RWTH)

Computing Treedepth

3

- ∢ ≣ →

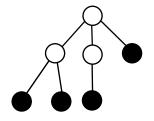
Image: A math a math



Any partial decomposition has less than wt nodes.

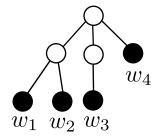
Counting

- How many trees with labeled leaves?
- How many height labelings per tree?



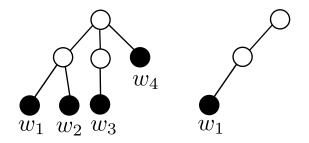
(日) (周) (三) (三)

3



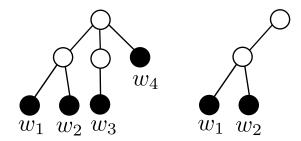
3

・ロン ・四 ・ ・ ヨン ・ ヨン



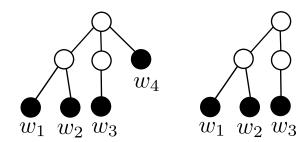
3

・ロン ・四 ・ ・ ヨン ・ ヨン



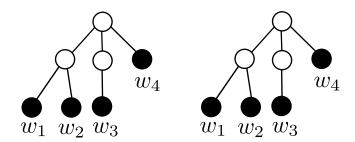
イロト イヨト イヨト

3



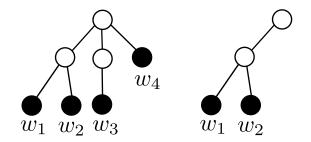
3

- 本間 と 本語 と 本語 と



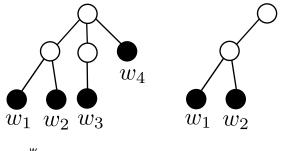
3

イロト イヨト イヨト



3

- 本間 と 本語 と 本語 と

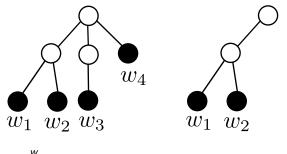


$$\prod_{i=1}^{w} it \cdot t$$

Fernando Sánchez Villaamil (RWTH)

3

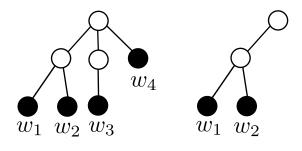
- 本間 と 本語 と 本語 と



$$\prod_{i=1}^{w} it \cdot t \le w! \cdot t^{2w}$$

- 本間 と 本語 と 本語 と

3

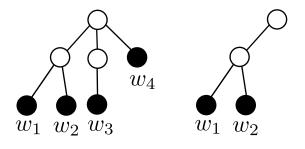


$$\prod_{i=1}^{w} it \cdot t \le w! \cdot t^{2w} \le 2^{2w \log t + w \log w}$$

Fernando Sánchez Villaamil (RWTH)

3

- 本間 と 本語 と 本語 と



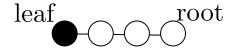
$$\prod_{i=1}^{w} it \cdot t \leq w! \cdot t^{2w} \leq 2^{2w \log t + w \log w} = 2^{O(wt)}$$

Fernando Sánchez Villaamil (RWTH)

3

イロト イヨト イヨト

How many labeling can a path have?



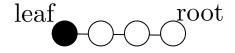
 $(1, 2, 3, 4, 5, 6, \dots, t)$

Fernando Sánchez Villaamil (RWTH)

3

- 4 同 6 4 日 6 4 日 6

How many labeling can a path have?

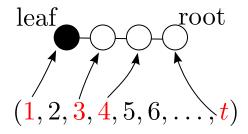


 $(1, 2, 3, 4, 5, 6, \dots, t)$

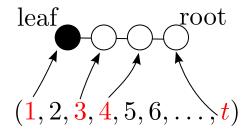
3

- 4 同 6 4 日 6 4 日 6

How many labeling can a path have?



How many labeling can a path have?



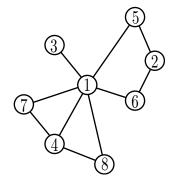
 $(2^t)^w = 2^{O(wt)}$

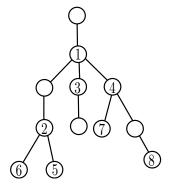
通 ト イヨ ト イヨト

The total number of labeled trees is $2^{O(wt)} \cdot 2^{O(wt)} = 2^{O(wt)}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

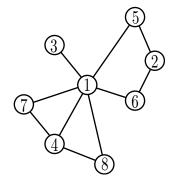
Non-trivially improvable treedepth decompositions

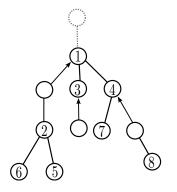




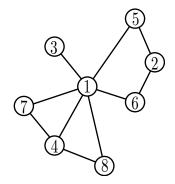
A 🖓

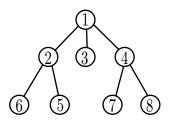
Non-trivially improvable treedepth decompositions



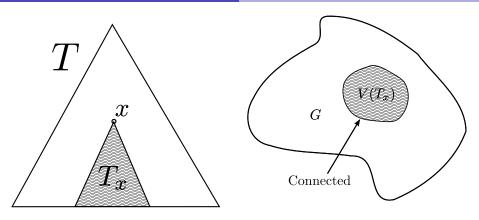


Non-trivially improvable treedepth decompositions

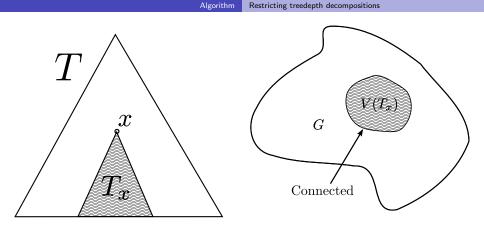




47 ▶

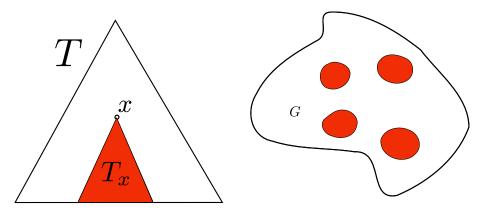


◆□>
◆□>
E>

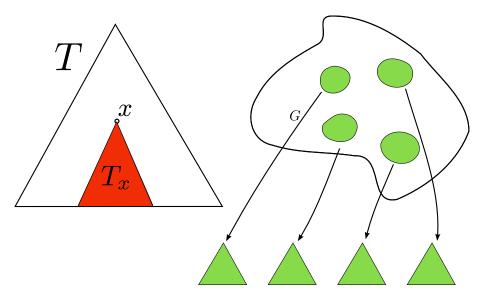


Definition (Nice treedepth decomposition)

Consider a treedepth decomposition T of G that is not trivially improvable. We say that T is *nice* if for every vertex $x \in V(T)$, the subgraph of G induced by the vertices in T_x is connected.

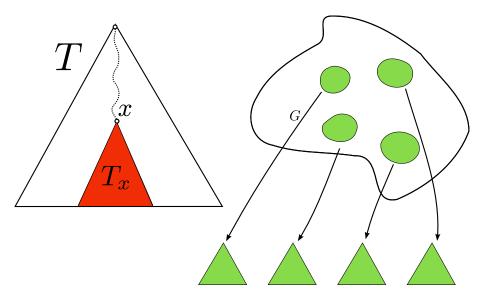


◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣



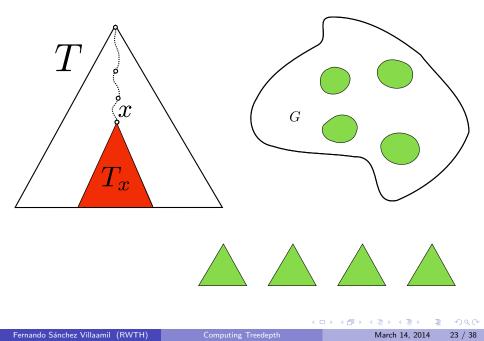
3

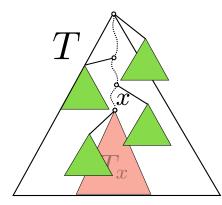
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

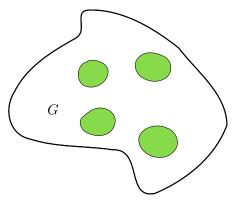


3

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯







・ロン ・雪 と ・ 田 と ・ 田

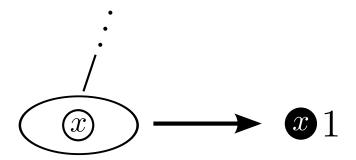
Lemma

For any graph there exists a treedepth decomposition of minimal depth which is nice and non-trivially improvable.

Algorithm

Dynamic programming

Leaf



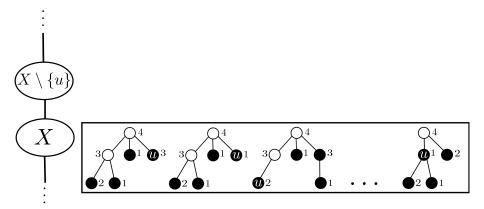
3

<ロ> (日) (日) (日) (日) (日)

Algorithm

Dynamic programming

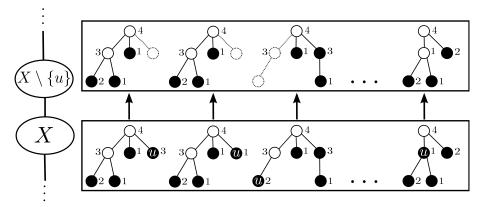
Forget



3

<ロ> (日) (日) (日) (日) (日)

Forget

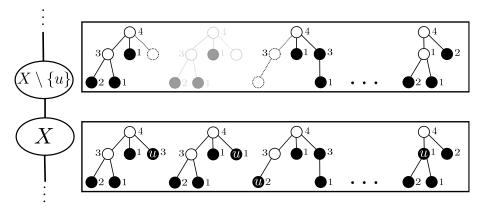


3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Algorithm

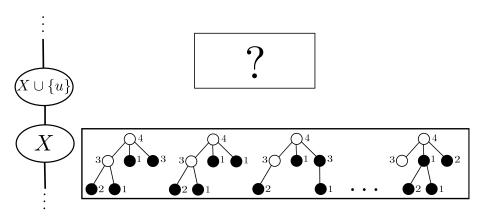
Forget



3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduce



3

<ロ> (日) (日) (日) (日) (日)

Introduce

() We guess every tree T with the following conditions:

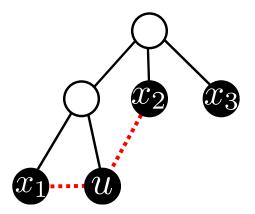
- $X \cup \{u\} \subseteq V(T)$,
- All leafs are in $X \cup \{u\}$,
- Height at most t.
- We keep some, dismiss others.

3

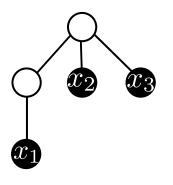
A D A D A D A

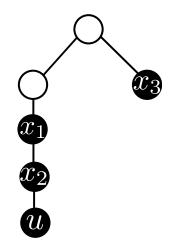
Introduce

Throw away if edges of X are missing



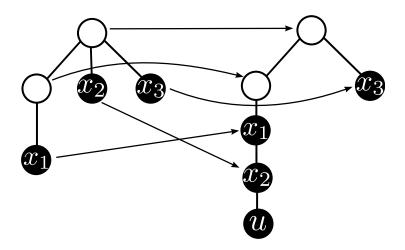
A 🖓



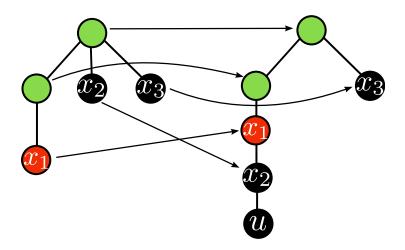


イロト イヨト イヨト イヨト

3

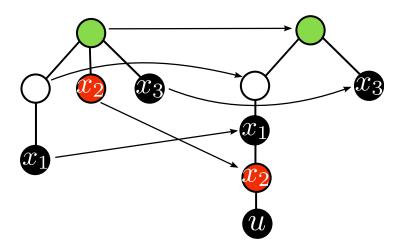


イロト イヨト イヨト イヨト

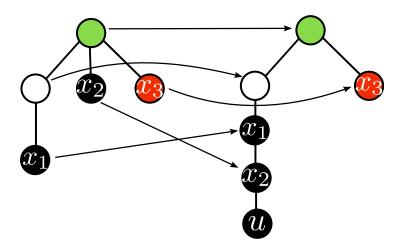


- ∢ ≣ →

Image: A match a ma

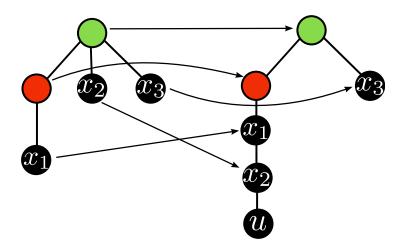


(日) (同) (三) (三)

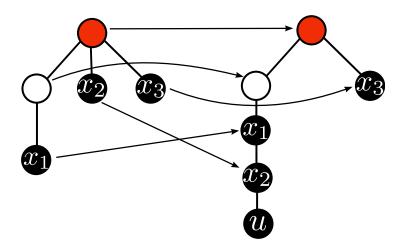


- ∢ ≣ →

Image: A match a ma

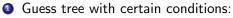


イロト イヨト イヨト イヨト

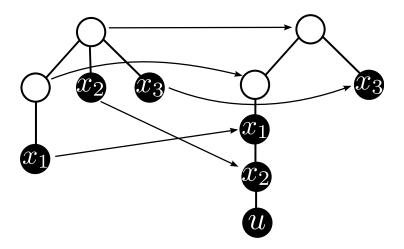


イロト イヨト イヨト イヨト

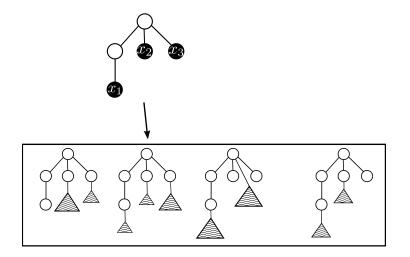
Introduce



- $X \cup \{u\} \subseteq V(T)$,
- All leafs are in $X \cup \{u\}$,
- Height at most t.
- **2** If edge missing between nodes of $X \cup \{u\}$, discard.
- If not a topological generalization of an element in old table, discard.

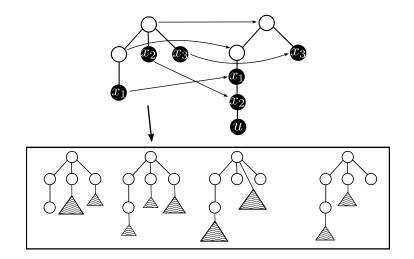


3



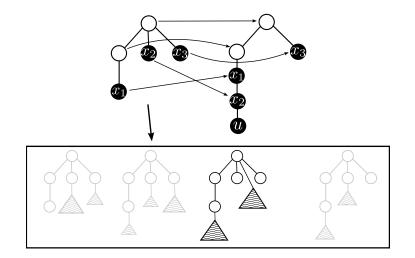
3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



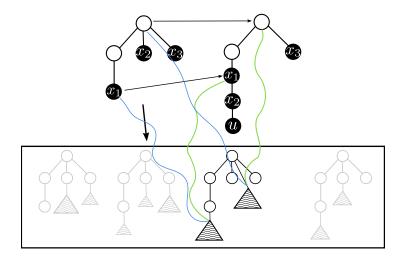
3

<ロ> (日) (日) (日) (日) (日)



3

<ロ> (日) (日) (日) (日) (日)



3

<ロ> (日) (日) (日) (日) (日)

Theorem

Given a graph G with n nodes and a tree decomposition of G of width w the treedepth t of G can be decided in time $2^{O(wt)} \cdot n$.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Simple algorithm

- Opth-first-search to construct treedepth decomposition T.
- **2** If depth greater than $2^t 1$ say NO.
- Solution \mathcal{P} from \mathcal{T} of width 2^t .
- Run algorithm on \mathcal{P} .

Theorem

There is a (simple) algorithm to decide if a graph G with n nodes has treedepth t which runs in time $2^{2^{O(t)}} \cdot n$.

Fast algorithm

Fast algorithm

- Use single exponential 5-approximation for treewidth¹.
- 2 Remember $\mathbf{tw}(G) \leq \mathbf{pw}(G) \leq \mathbf{td}(G) 1$.
- 3 If width is greater than 5t say NO.
- Else run algorithm on tree decomposition.

Theorem

There is a algorithm to decide if a graph G with n nodes has treedepth t which runs in time $2^{O(t^2)} \cdot n$.

¹Very useful result by Hans Bodlaender, Pål G. Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov and Michał Pilipczuk A D N A B N A B N A

We have seen:

- An algorithm on tree decompositions which runs in time $2^{O(wt)} \cdot n$.
- A (relatively) simple direct algorithm in time $2^{2^{O(t)}} \cdot n$.
- A fast algorithm in time $2^{O(t^2)} \cdot n$.

Conclusion

Related Questions

- Is it sensible to implement?
- Can we approximate treedepth in time $2^{O(t)} \cdot n$.
- Can we find new algorithms on treedepth which are better than working in the path decomposition given by a treedepth decomposition?

Thank you for listening. Questions?

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・