
Linear-Time Algorithms for Graphs of Bounded
Rankwidth: A Fresh Look Using Game Theory

(Extended Abstract) ?

Alexander Langer, Peter Rossmanith, and Somnath Sikdar

RWTH Aachen University, 52074 Aachen, Germany.

Abstract. We present an alternative proof of a theorem by Courcelle,
Makowski and Rotics [6] which states that problems expressible in MSO1

are solvable in linear time for graphs of bounded rankwidth. Our proof
uses a game-theoretic approach and has the advantage of being self-
contained. In particular, our presentation does not assume any back-
ground in logic or automata theory. Moreover our approach can be gen-
eralized to prove other results of a similar flavor, for example, that of
Courcelle’s Theorem for treewidth [3, 19].

1 Introduction

In this paper we give an alternate proof of the theorem by Courcelle, Makowski
and Rotics [6]: Every decision or optimization problem expressible in MSO1 is
linear time solvable on graphs of bounded cliquewidth. We prove the same the-
orem for graphs of bounded rankwidth. Since rankwidth and cliquewidth are
equivalent width measures in the sense that a graph has bounded rankwidth iff
it has bounded cliquewidth, it does not matter which of these width measures
is used to state the theorem [21].

The proof by Courcelle et al. [6, 7] makes use of the Feferman-Vaught Theo-
rem [10] adapted to MSO (cf. [14, 15]) and MSO transductions (cf., [4]). Under-
standing this proof requires a reasonable background in logic and as such this
proof is out of reach of many practicing algorithmists. An alternative proof of
this theorem has been recently published by Ganian and Hliněný [11] who use
an automata-theoretic approach to prove the theorem. Our approach to proving
this theorem is game-theoretic, an outline of which follows.

It is known that any graph of rankwidth t can be represented by a t-labeled
parse tree [11]. Given any integer q, one can define an equivalence relation on the
class of all t-labeled graphs as follows: t-labeled graphs G1 and G2 are equivalent,
denoted G1 ≡MSO

q G2, iff for every MSO1-formula of quantifier rank at most q
G1 |= ϕ iff G2 |= ϕ, i.e., no formula with at most q nested quantifiers can
distinguish them. The number of equivalence classes depends on the quantifier
rank q and the number of labels t and each equivalence class can be represented
? This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant

RO 927/8. A full version is available at http://arxiv.org/abs/1102.0908.

2 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

by a tree-like structure of size f(q, t), where f is a computable function of q
and t only.

This tree-like representative of an equivalence class, called a reduced char-
acteristic tree of depth q and denoted by RCq(G), captures all model-checking
games that can be played on graphs in that equivalence class and formulas of
quantifier rank at most q (see Section 3). One can construct a reduced char-
acteristic tree of depth q given a t-labeled parse tree of an n-vertex graph in
time O(f ′(q, t) · n) (Section 4). Finally to decide whether G |= ϕ, for some
MSO1-formula ϕ of quantifier rank at most q, we simply simulate the model
checking game on ϕ and G using RCq(G). This takes an additional O(f(q, t))
time and shows that one can decide whether G |= ϕ in time O(f ′′(q, t)·n) proving
the main theorem:

The Main Theorem ([6, 11]). Let ϕ be an MSO1-formula with qr(ϕ) ≤ q.
There is an algorithm that takes as input a t-labeled parse tree decomposition T
of a graph G and decides whether G |= ϕ in time O(f(q, t) · |T |), where f is some
computable function and |T | is the number of nodes in T .

The notions of q-equivalence ≡MSO
q and related two-player pebble games

(such as the Ehrenfeucht-Fräıssé game) are fundamental to finite model theory
and can be found in any book on the subject (cf. [9]). However for understanding
this paper, one does not need any prior knowledge of these concepts.

2 Preliminaries

Rankwidth was originally defined by Oum and Seymour in terms of branch-
width [22]. However this definition is not very useful from an algorithmic point-
of-view and this prompted Courcelle and Kanté [5] to introduce the notion of
bilinear products of multi-colored graphs and algebraic expressions over these
products as an equivalent description of rankwidth. Ganian and Hliněný [11]
formulated the same ideas in terms of labeling joins and parse trees which we
briefly describe here.

t-labeled graphs. A t-labeling of a graph G is a mapping lab : V (G)→ 2[t] which
assigns to each vertex of G a subset of [t] = {1, . . . , t}. A t-labeled graph is a
pair (G, lab), where lab is a labeling of G and is denoted by Ḡ. Since a t-labeling
function may assign the empty label to each vertex, an unlabeled graph is consid-
ered to be a t-labeled graph for all t ≥ 1. A t-labeling ofGmay also be interpreted
as a mapping from V (G) to the t-dimensional binary vector space GF(2t) by as-
sociating the subset X ⊆ [t] with the t-bit vector x = x1 . . . xt, where xi = 1 if
and only if i ∈ X. Thus one can represent a t-labeling lab of an n-vertex graph
as an n× t binary matrix.

A t-relabeling is a mapping f : [t]→ 2[t]. One can also view a t-relabeling as
a linear transformation from the space GF(2t) to itself and one can therefore
represent a t-relabeling by a t× t binary matrix Tf . For a t-labeled graph Ḡ =
(G, lab), we define f(Ḡ) to be the t-labeled graph (G, f ◦ lab), where (f ◦ lab)(v)
is the vector in GF(2t) obtained by applying the linear transformation f to the

Linear-Time Algorithms for Graphs of Bounded Rankwidth 3

vector lab(v). It is easy to see that the labeling lab′ = f ◦ lab is the matrix
product lab × Tf . Informally, to calculate (f ◦ lab)(v), apply the map f to each
element of lab(v) and “sum the elements modulo 2”.

We now define three operators on t-labeled graphs that will be used to define
parse tree decompositions of t-labeled graphs. These operators were first de-
scribed by Ganian and Hliněný in [11]. The first operator is denoted � and rep-
resents a nullary operator that creates a new graph vertex with the label 1. The
second operator is the t-labeled join and is defined as follows. Let Ḡ1 = (G1, lab1)
and Ḡ2 = (G2, lab2) be t-labeled graphs. The t-labeled join of Ḡ1 and Ḡ2, de-
noted Ḡ1 ⊗ Ḡ2, is defined as taking the disjoint union of G1 and G2 and adding
all edges between vertices u ∈ V (G1) and v ∈ V (G2) such that |lab1(u)∩ lab2(v)|
is odd. The resulting graph is unlabeled.

Note that |lab1(u)∩ lab2(v)| is odd if and only if the scalar product lab1(u) •
lab2(v) = 1, that is, the vectors lab1(u) and lab2(v) are not orthogonal in the
space GF(2t). For X ⊆ V (G1), the set of vectors γ(Ḡ1, X) = { lab1(u) | u ∈ X }
generates a subspace 〈γ(Ḡ1, X)〉 of GF(2t). The following result shows which
pair of vertex subsets do not generate edges in a t-labeled join operation.

Proposition 1 ([12]) Let X ⊆ V (G1) and Y ⊆ V (G2) be arbitrary nonempty
subsets of t-labeled graphs Ḡ1 and Ḡ2. In the join graph Ḡ1⊗ Ḡ2 there is no edge
between any vertex of X and a vertex of Y if and only if the subspaces 〈γ(Ḡ1, X)〉
and 〈γ(Ḡ2, Y)〉 are orthogonal in the vector space GF(2t).

The third operator is called the t-labeled composition and is defined using
the t-labeled join and t-relabelings. Given three t-relabelings g, f1, f2 : [t]→ 2[t],
the t-labeled composition ⊗[g|f1, f2] is defined on a pair of t-labeled graphs Ḡ1 =
(G1, lab1) and Ḡ2 = (G2, lab2) as follows:

Ḡ1 ⊗[g|f1, f2] Ḡ2 := H̄ = (Ḡ1 ⊗ g(Ḡ2), lab),

where lab(v) = fi ◦ labi(v) for v ∈ V (Gi) and i ∈ {1, 2}. Thus the t-labeled
composition first performs a t-labeling join of Ḡ1 and g(Ḡ2) and then relabels
the vertices of G1 using f1 and the vertices of G2 with f2. Note that a t-labeling
composition is not commutative and that {u, v} is an edge of H̄ if and only
if lab1(u) • (lab2(v) × Tg) = 1, where Tg is the matrix representing the linear
transformation g.

Definition 1 (t-labeled Parse Trees). A t-labeled parse tree T is a finite,
ordered, rooted subcubic tree (with the root of degree at most two) such that

1. all leaves of T are labeled with the � symbol, and
2. all internal nodes of T are labeled with a t-labeled composition symbol.

A parse tree T generates the graph G that is obtained by the successive leaves-
to-root application of the operators that label the nodes of T .

It is known that rankwidth can be defined using t-labeled parse trees.

4 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

Theorem 1 (The Rankwidth Parsing Theorem [5, 11]). A graph G has
rankwidth at most t if and only if some labeling of G can be generated by a t-
labeled parse tree. Moreover, a width-k rank-decomposition of an n-vertex graph
can be transformed into a t-labeled parse tree on Θ(n) nodes in time O(t2 · n2).

Monadic second-order logic (MSO) is an extension of first-order logic which
allows quantification over sets of objects. We briefly fix notation, for details
please refer to [9]. A vocabulary τ is a finite set of relation symbols P,Q,R, . . .
each associated with a natural number known as its arity. A τ -structure A
consists of a set A called the universe of A and a p-ary relation RA ⊆ Ap for
every p-ary relation symbol R in τ . Graphs can be expressed in a natural way as
relational structures with universe the vertex set and a vocabulary consisting of
a single binary (edge) relation symbol. To express a t-labeled graph G, we may
use a vocabulary τ consisting of the binary relation symbol E (representing,
as usual, the edge relation) and t unary relation symbols L1, . . . , Lt, where Li

represents the set of vertices labeled i.
The quantifier rank qr(ϕ) of a formula ϕ is the maximum number of nested

quantifiers occurring in it. A variable in a formula is free if it is not within
the scope of a quantifier. By free(ϕ) we denote the set of free variables of ϕ. A
formula without free variables is called a sentence.

An assignment in A is a function α that assigns values to the free variables
of ϕ. For a variable x and an assignment α, we let α[x/a] denote an assignment
that agrees with α except that it assigns the value a to x. We write A |= ϕ[α] if
ϕ holds in A , when the free variables of ϕ have been assigned the values given
by α.

3 The ≡MSO
q -Relation and its Characterization

Given a vocabulary τ and a natural number q, one can define an equivalence
relation on the class of τ -structures as follows. For τ -structures A and B and q ∈
N, define A ≡MSO

q B (q-equivalence) if and only if A |= ϕ ⇐⇒ B |= ϕ for all
MSO sentences ϕ of quantifier rank at most q. In other words, two structures are
q-equivalent if and only if no sentence of quantifier rank at most q can distinguish
them. We provide a characterization of the relation ≡MSO

q using objects called
characteristic trees of depth q. We show that two τ -structures A and B have
identical characteristic trees of depth q if and only if A ≡MSO

q B. We shall see
that characteristic trees are specially useful because their size is “small” and for
graphs of bounded rankwidth can be constructed efficiently given their parse
tree decomposition. However before we can do that, we need a few definitions.

Definition 2 (Induced Structure and Sequence). Let A a τ -structure
with universe A and let c̄ = c1, . . . , cm ∈ Am. The structure A ′ = A [c̄] =
A [{c1, . . . , cm}] induced by c̄ is a τ -structure with universe A′ = {c1, . . . , cm}
and interpretations PA ′ := PA ∩ {c1, . . . , cm}r for every relation symbol P ∈ τ
of arity r. For an arbitrary sequence of objects c̄ = c1, . . . , cm and a set U , we
let c̄[U] be the subsequence of c̄ that contains only objects in U . For a sequence

Linear-Time Algorithms for Graphs of Bounded Rankwidth 5

of sets C̄ = C1, . . . , Cp we let C̄ ∩A denote the sequence C1 ∩U, . . . , Cp ∩U and
write C̄ ∩ c̄ for C1 ∩ {c1, . . . , cm}, . . . , Cp ∩ {c1, . . . , cm}.

Definition 3 (Partial Isomorphism). Let A and B be structures over the
vocabulary τ with universes A and B, respectively, and let π be a map such
that domain(π) ⊆ A and range(π) ⊆ B. The map π is said to be a partial
isomorphism from A to B if (1) π is one-to-one and onto; and (2) for every
p-ary relation symbol R ∈ τ and all a1, . . . , ap ∈ domain(π), RA a1, . . . , ap iff
RBπ(a1), . . . , π(ap). If domain(π) = A and range(π) = B, then π is an isomor-
phism between A and B and A and B are isomorphic.

Let (A , Ā) and (B, B̄) be tuples, where Ā = A1, . . . , As and B̄ = B1, . . . , Bs,
s ≥ 0, such that for all 1 ≤ i ≤ s, we have Ai ⊆ A and Bi ⊆ B. We say that π is a
partial isomorphism between (A , Ā) and (B, B̄) if (1) π is a partial isomorphism
between A and B, and (2) for each a ∈ domain(π) and all 1 ≤ i ≤ s, it holds
that a ∈ Ai iff π(a) ∈ Bi. The tuples (A , Ā) and (B, B̄) are isomorphic if π is
an isomorphism between A and B.

In Definition 2 of an induced structure we ignore the order of the elements
in c̄. For the purposes in this paper, the order in which the elements are chosen
is important because it is used to map variables in the formula to elements in
the structure. Moreover, elements could repeat in the vector c̄ and this fact is
lost when we consider the induced structure A [c̄]. To capture both the order and
the multiplicity of the elements in vector c̄ in the structure A [c̄], we introduce
the notion of an ordered induced structure.

Let U be a set and ≡ be an equivalence relation on U . For u ∈ U , we let
[u]≡ = {u′ ∈ U | u ≡ u′ } be the equivalence class of u under ≡, and U/≡ =
{ [u]≡ | u ∈ U} be the quotient space of U under ≡. A vector c̄ = c1, . . . , cm ∈ Am

defines a natural equivalence relation ≡c̄ on the set [m] = {1, . . . ,m}: for i, j ∈
[m], we have i ≡c̄ j if and only if ci = cj . For simplicity, we write [i]c̄ for [i]≡c̄

.

Definition 4 (Ordered Induced Structure). Let A be a τ -structure and c̄ =
c1, . . . , cm ∈ Am. The ordered structure induced by c̄ is the τ -structure H =
Ord(A , c̄) with universe H = [m]/≡c̄ such that the map h : ci 7→ [i]c̄, 1 ≤
i ≤ m, is an isomorphism between A [c̄] and H . Thus Ord(A , c̄) is simply the
structure A [c̄] with element ci being called [i]c̄. Let C̄ = C1, . . . , Cp with Ci ⊆ A,
1 ≤ i ≤ p. Then we let Ord(A , c̄, C̄) :=

(
Ord(A , c̄), h̄, h(C̄ ∩ c̄)

)
, where h : ci 7→

[i]c̄, 1 ≤ i ≤ m, h̄ = h(1), . . . , h(m) and h(C̄ ∩ c̄) = h(C1 ∩ c̄), . . . , h(Cp ∩ c̄). See
Figure 1.

3.1 Model Checking Games and Characteristic Trees

Testing whether a non-empty structure models a formula can be specified by a
model checking game (also known as Hintikka game, see [16, 13]). Let A be a
τ -structure with universe A. Let ϕ be a formula and α be an assignment to the
free variables of ϕ. The game is played between two players called the verifier
and the falsifier. The verifier tries to prove that A |= ϕ[α] whereas the falsifier

6 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

a1

a2

a3a4

a5
{1, 5}

{2}

{3, 4}

c̄

Fig. 1. The vector c̄ = a5a2a3a3a5 lists vertices in the graph G on the left. The resulting
ordered induced structure Ord(G , c̄) is depicted in black on the right.

tries to disprove this. We assume without loss of generality that ϕ is in negation
normal form, i.e., negations in ϕ appear only at the atomic level. This can always
be achieved by applying simple rewriting rules such as ¬∀xϕ(x) ; ∃x¬ϕ(x). The
model checking game MC(A , ϕ, α) is positional with positions (ψ, β), where ψ
is a subformula of ϕ and β is an assignment to the free variables of ψ. The
game starts at position (ϕ, α). At a position (∀Xψ(X), β), the falsifier chooses
a subset D ⊆ A, and the game continues at position (ψ, β[X/D]). Similarly, at
a position (∀xψ(x), β) or (ψ1 ∧ ψ2, β), the falsifier chooses an element d ∈ A
or some ψ := ψi for some 1 ≤ i ≤ 2 and the game then continues at posi-
tion (ψ, β[x/d]) or (ψ, β), respectively. The verifier moves analogously at exis-
tential formulas. If an element is chosen then the move is called a point move;
if a set is chosen then the move is a set move. The game ends once a position
(ψ, β) is reached, such that ψ is an atomic or negated formula. The verifier wins
if and only if A |= ψ[β]. We say that the verifier has a winning strategy if they
win every play of the game irrespective of the choices made by the falsifier. It is
well known that the model checking game characterizes the satisfaction relation
|=. The following lemma can easily be shown by induction over the structure
of ϕ.

Lemma 1 (cf., [13]). Let A be a τ -structure, let ϕ be an MSO formula, and
let α be an assignment to the free variables of ϕ. Then A |= ϕ[α] if and only if
the verifier has a winning strategy on the model checking game on A , ϕ, and α.

A model checking game on a τ -structure A and a formula ϕ with quantifier
rank q can be represented by a tree of depth q in which the nodes represent
positions in the game and the edges represent point and set moves made by the
players. Such a tree is called a game tree and is used in combinatorial game
theory for analyzing games (see [2], for instance). For our purposes, we define
a notion related to game trees called full characteristic trees which are finite
rooted trees, where the nodes represent positions and edges represent moves of
the game. A node is a tuple that represents the sets and elements that have been
chosen thus far. The node can be thought of as a succinct representation of the
state of the game played till the position represented by that node. However,
note that a full characteristic tree depends on the quantifier rank q and not on
a particular formula.

Linear-Time Algorithms for Graphs of Bounded Rankwidth 7

Definition 5 (Full Characteristic Trees). Let A be a τ -structure with uni-
verse A and let q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am, sets C̄ = C1, . . . , Cp

with Ci ⊆ A, 1 ≤ i ≤ p, let T = FCq(A , c̄, C̄) be a finite rooted tree such that (1)
root(T) = (A [c̄], c̄, C̄∩ c̄), and (2) if m+p+1 ≤ q then the subtrees of the root of
FCq(A , c̄, C̄) is the set

{
FCq(A , c̄d, C̄)

∣∣ d ∈ A}
∪

{
FCq(A , c̄, C̄D)

∣∣ D ⊆ A}
.

The full characteristic tree of depth q for A , denoted by FCq(A), is defined
as FCq(A , ε, ε), where ε is the empty sequence.

Let T = (V,E) be a rooted tree. We let root(T) be the root of T and for u ∈ V
we let childrenT (u) = { v ∈ V | (u, v) ∈ E } and subtreeT (u) be a subtree of T
rooted at u, and subtrees(T) = { subtreeT (u) | u ∈ childrenT (root(T)) }.

We now define a model checking game MC(F,ϕ, x̄, X̄) on full characteristic
trees F = FCq(A , c̄, C̄) and formulas ϕ with qr(ϕ) ≤ q, where x̄ = x1, . . . , xm

are the free object variables of ϕ, X̄ = X1, . . . , Xp are the free set variables
of ϕ, c̄ = c1, . . . , cm ∈ Am, and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p.
The rules are similar to the classical model checking game MC(A , ϕ, α). The
game is positional and played by two players called the verifier and the falsi-
fier and is defined over subformulas ψ of ϕ. However instead of choosing sets
and elements explicitly, the tree F is traversed top-down. At the same time,
we “collect” the list of variables the players encountered, such that we can
make the assignment explicit once the game ends. The game starts at the posi-
tion (ϕ, x̄, X̄, root(F)). Let (ψ, ȳ, Ȳ , v) be the position at which the game is being
played, where v = (H , d̄, D̄) is a node of FCq(A , c̄, C̄), and ψ is a subformula
of ϕ with free(ψ) = ȳ ∪ Ȳ . At a position (∀Xϑ(X), ȳ, Ȳ , v) the falsifier chooses
a child u = (H , d̄, D̄D) of v, where D ⊆ A, and the game continues at posi-
tion (ϑ, ȳ, Ȳ X, u). Similarly, at a position (∀xϑ(x), ȳ, Ȳ , v) the falsifier chooses a
child u = (H ′, d̄d, D̄), where d ∈ A, and the game continues in (ϑ, ȳx, Ȳ , u), and
at a position (ϑ1∧ϑ2, ȳ, Ȳ , v), the falsifier chooses some 1 ≤ i ≤ 2, and the game
continues at position (ϑi, ȳ, Ȳ , v). The verifier moves analogously at existential
formulas.

The game stops once an atomic or negated formula has been reached. Suppose
that a particular play of the game ends at a position (ψ, ȳ, Ȳ , v), where ψ is a
negated atomic or atomic formula with free(ψ) = {y1, . . . , ys, Y1, . . . , Yt} and
v = (H , d̄, D̄) some node of F , where d̄ = d1, . . . , ds and D̄ = D1, . . . , Dt. Let
α be an assignment to the free variables of ϕ, such that α(yi) = di, 1 ≤ i ≤ s,
and α(Yi) = Di, 1 ≤ i ≤ t. The verifier wins the game if and only if H |= ψ[α].
The verifier has a winning strategy if and only if they can win every play of
the game irrespective of the choices made by the falsifier. In what follows, we
identify a position (ψ, ȳ, Ȳ , v) of the game MC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where
v = (H , d̄, D̄), with the game MC(FCq(A , d̄, D̄), ψ, ȳ, Ȳ).

Lemma 2. Let A be a τ -structure and let ϕ be an MSO formula with qr(ϕ) ≤ q
and free variables {x1, . . . , xm, X1, . . . , Xm}. Let α be an assignment to the free
variables of ϕ. Then the verifier has a winning strategy in the model checking
gameMC(A , ϕ, α) if and only if the verifier has a winning strategy in the model
checking gameMC(FCq(A , c̄, C̄), ϕ, x̄, X̄), where c̄ = α(x1), . . . , α(xm) and C̄ =
α(X1), . . . , α(Xp).

8 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

Lemma 2 is shown by simulating each play of the model checking game
MC(A , ϕ, α) in MC(FCq(A , c̄, C̄), ϕ, x̄, X̄) and vice versa. Therefore, a full
characteristic tree of depth q for a structure A can be used to simulate the
model checking game on A and any formula ϕ of quantifier rank at most q.
However the size of such a tree is of the order (2n + n)q, where n is the num-
ber of elements in the universe of A . We now show that one can “collapse”
equivalent branches of a full characteristic tree to obtain a much smaller labeled
tree (called a reduced characteristic tree) that is in some sense equivalent to
the original (full) tree. We will then show that for a graph G of rankwidth at
most t, the reduced characteristic tree of G is efficiently computable given a t-
labeled parse tree decomposition of G. We achieve this collapse by replacing the
induced structures A [c̄] in the full characteristic tree by a more generic, implicit
representation — that of their ordered induced substructures Ord(A , c̄).

Definition 6 (Reduced Characteristic Trees). Let A be a τ -structure and
let q ∈ N. For elements c̄ = c1, . . . , cm ∈ Am, sets C̄ = C1, . . . , Cp with Ci ⊆ A,
1 ≤ i ≤ p, we let RCq(A , c̄, C̄) be a finite rooted tree such that (1) the root of
RCq(A , c̄, C̄)) is Ord(A , c̄, C̄), and (2) if m+ p+ 1 ≤ q then the subtrees of the
root of RCq(A , c̄, C̄) is the set {RCq(A , c̄d, C̄) | d ∈ A } ∪ {RCq(A , c̄, C̄D) |
D ⊆ A }. The reduced characteristic tree of depth q for the structure A , denoted
by RCq(A), is defined to be RCq(A , ε, ε), where ε is the empty sequence.

One can define the model checking game MC(R,ϕ, x̄, X̄) on a tree R =
RCq(A , c̄, C̄) in exactly the same manner as MC(FCq(A , c̄, C̄), ϕ, x̄, X̄). As
mentioned before, our interest in RCq(A , c̄, C̄) lies in that: (1) they are equiv-
alent to FCq(A , c̄, C̄); (2) they are “small”; and, (3) they are efficiently com-
putable if A is a graph of rankwidth at most t. We first show that RCq(A , c̄, C̄)
is equivalent to its full counterpart FCq(A , c̄, C̄).

Lemma 3. Let A be a τ -structure and let q ∈ N. Let c̄ = c1, . . . , cm ∈ Am

and C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Let F = FCq(A , c̄, C̄) and
R = RCq(A , c̄, C̄). Then the verifier has a winning strategy in the model checking
gameMC(F,ϕ, x̄, X̄) if and only if the verifier has a winning strategy in the game
MC(R,ϕ, x̄, X̄), where ϕ ∈ MSO(τ) with qr(ϕ) ≤ q with free object variables
x̄ = x1, . . . , xm and free set variables X̄ = X1, . . . , Xp.

From Lemmas 1, 2, and 3, we obtain the important fact that reduced char-
acteristic trees are in fact equivalent to their full counterparts and characterize
the equivalence relation ≡MSO

q .

Corollary 1. Let A and B be τ -structures and q ∈ N. Then RCq(A) =
RCq(B) iff A ≡MSO

q B.

The next lemma shows that reduced characteristic trees have small size.
For i ∈ N, we define exp(i)(·) as: exp(0)(x) = x, exp(1)(x) = 2x and exp(i)(x) =
22 exp(i−1)(x) for i ≥ 2.

Lemma 4. Let A be a τ -structure with universe A such that each relation sym-
bol in τ has arity at most r, and q ∈ N. Then the number of reduced characteristic

Linear-Time Algorithms for Graphs of Bounded Rankwidth 9

trees RCq(A , c̄, C̄) for all possible choices of c̄, C̄ is at most exp(q+1)(|τ | · qr +
q log q + q2). The size of a reduced characteristic tree RCq(A , c̄, C̄) is at most
(exp(q)(|τ | · qr + q log q + q2))4.

4 Constructing Characteristic Trees

In this section, we show how to construct reduced characteristic trees of depth q
for a graph G of rankwidth t when given a t-labeled parse tree decomposi-
tion of G. A t-labeled graph may be represented as τ -structure where τ =
{E,L1, . . . , Lt}. The symbol E is a binary relation symbol representing the edge
relation and Li for 1 ≤ i ≤ t is a unary relation symbol representing the set of
vertices with label i. In what follows, whenever we talk about a τ -structure A ,
we mean a graph viewed as a structure over the vocabulary {E,L1, . . . , Lt}.

Lemma 5. Let A be a τ -structure with |A| = 1. Let q ≥ 0 and c̄ ∈ Am and
C̄ = C1, . . . , Cp with Ci ⊆ A, 1 ≤ i ≤ p. Then RCq(A , c̄, C̄) can be constructed
in constant time for each fixed q.

In what follows, we let A1,A2 and A = A1 ⊗ A2 be τ -structures, where
⊗ = ⊗[g|f1, f2] for t-relabelings g, f1, and f2. Recall that if A = A1 ⊗ A2,
then we assume that A1 and A2 (the universes of A1 and A2, respectively) are
disjoint. Furthermore for a fixed constant q ≥ 0, let m and p be nonnegative
integers such that m+ p ≤ q, c̄ = c1, . . . , cm ∈ (A1 ∪A2)m and C̄ = C1, . . . , Cp,
where Cj ⊆ A1 ∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2}, we let c̄i = ci,1, . . . , ci,mi = c̄[Ai].

In the remainder of this section, we show how to construct RCq(A , c̄, C̄)
given RCq(A1, c̄1, C̄ ∩ c̄1) and RCq(A2, c̄2, C̄ ∩ c̄2). For the construction, we need
to know the order in which the elements in c̄1 and c̄2 appear in c̄. This motivates
us to define the notion of an indicator vector ind(A1, A2, c̄).

Definition 7. The indicator vector of c̄ = c1, . . . , cm, denoted ind(A1, A2, c̄), is
the vector d̄ = d1, . . . , dm, such that for i ∈ {1, 2} and all 1 ≤ j ≤ m it holds
that dj = (i, k) iff cj = ci,k. That is, dj = (i, k) iff cj is the kth element in
the vector c̄i = c̄[Ai]. If d̄ = d1, . . . , dm and (i, k) ∈ {1, 2} × [m + 1], then we
use d̄(i, k) to denote the vector d1, . . . , dm+1, where dm+1 = (i, k).

Constructing R = RCq(A , c̄, C̄) when given R1 = RCq(A1, c̄1, C̄ ∩ c̄1),
R2 = RCq(A2, c̄2, C̄ ∩ c̄2), and d̄ = ind(A1, A2, c̄) consists of the following two
steps: First construct the label for root(R) = Ord(A , c̄, C̄), and then recursively
construct its subtrees. Since Ord(A , c̄) ∼= A [c̄] and Ai[c̄i] ∼= Ord(Ai, c̄i), one
easily sees that Ord(A , c̄) ∼= Ord(A1, c̄1) ⊗ Ord(A2, c̄2). For the first step, we
therefore just need to rename elements in Ord(A1, c̄1) ⊗ Ord(A2, c̄2) in an ap-
propriate way. The information on how elements are to be renamed is stored in
the indicator vector d̄ of c̄. The formal definition of the renaming operator ⊗d̄

and Lemma 6 are technical and may be skipped if the reader believes that one
can construct Ord(A , c̄) from Ord(A1, c̄1) and Ord(A2, c̄2) using d̄.

10 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

Definition 8. For i ∈ {1, 2}, let Ord(Ai, c̄i, C̄ ∩ Ai) = (Hi, c̄
′
i, C̄
′
i). Define a

map f : [m] → H1] H2 as follows: for all 1 ≤ j ≤ m, let f(j) = [k]c̄i
iff

dj = (i, k). Then we define Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2) as
Ord(H1 ⊗H2, f(1) . . . f(m), C̄ ′1 ∪ C̄ ′2).

Lemma 6. Let A1 and A2 be τ -structures and let ⊗ =⊗[g|f1, f2] for some t-
relabelings g, f1, f2. Let c̄ = c1, . . . , cm ∈ (A1 ∪A2)m and C̄ = C1, . . . , Cp, where
Cj ⊆ A1 ∪ A2 for 1 ≤ j ≤ p. Also let d̄ = ind(A1, A2, c̄). Then Ord(A1 ⊗
A2, c̄, C̄) = Ord(A1, c̄[A1], C̄ ∩A1)⊗d̄ Ord(A2, c̄[A2], C̄ ∩A2).

We now define the tree cross product R1 ×(q,⊗, d̄) R2 of R1 and R2 and
then show that in fact R = R1 ×(q,⊗, d̄) R2. As motivated before, the root
of the tree cross product is simply root(R1) ⊗d̄ root(R2). For the construction
of the subtrees, recall that each subtree of R corresponds to either a set move
U ⊆ A or a point move a ∈ A. Here, {U ⊆ A } = {U1]U2 | U1 ⊆ A1, U2 ⊆ A2 }
and A = A1]A2. We can therefore reconstruct the subtrees of R by recursively
combining each subtree for a set U1 ⊆ A1 with a subtree for a set U2 ⊆ A2

(the set S2 in the following definition), and by choosing subtrees of R1 for point
moves in A1, and choosing subtrees of R2 for point moves in A2 (the set S1 in
the following definition).

Definition 9 (Tree Cross Product). Let A1 and A2 be τ -structures and
let ⊗ = ⊗[g|f1, f2] for some t-relabelings g, f1, f2. For a fixed constant q ≥ 0,
let m and p be nonnegative integers such that m + p ≤ q. Let c̄ = c1, . . . , cm ∈
(A1 ∪A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1 ∪A2, 1 ≤ j ≤ p. For i ∈ {1, 2},
let c̄i = ci,1, . . . , ci,mi

= c̄[Ai], qi ≥ q−m−p, and Ri = RCqi
(Ai, c̄i, C̄∩Ai) with

root(Ri) = (Hi, c̄
′
i, C̄
′
i) = Ord(Ai, c̄i, C̄ ∩ Ai). We define the tree cross product

of R1 and R2, R = R1 ×(q,⊗, d̄) R2, be a finite, rooted tree such that (1)
root(R) = root(R1) ⊗d̄ root(R2), and (2) if m + p + 1 ≤ q, then subtrees(R) =
S1 ∪ S2, where

S1 =
{

subtreeR1(u1) ×(q,⊗, d̄(1,m1 + 1)) R2

∣∣
u1 = (H ′

1 , c̄
′
1c, C̄

′
1) ∈ childrenR1(root(R1))

}
∪{

R1 ×(q,⊗, d̄(2,m2 + 1)) subtreeR2(u2)
∣∣

u2 = (H ′
2 , c̄
′
2c, C̄

′
2) ∈ childrenR2(root(R2))

}
,

S2 =
{

subtreeR1(u1) ×(q,⊗, d̄) subtreeR2(u2)
∣∣

ui = (H ′
i , c̄
′
i, C̄
′
iDi) ∈ childrenRi

(root(Ri)), 1 ≤ i ≤ 2
}
.

Lemma 7. Let A1 and A2 be τ -structures and let ⊗ = ⊗[g|f1, f2] for some
t-relabelings g, f1, f2. For nonnegative integers q,m, p with m + p ≤ q, let c̄ =
c1, . . . , cm ∈ (A1 ∪ A2)m and C̄ = C1, . . . , Cp, where Cj ⊆ A1 ∪ A2 for 1 ≤
j ≤ p. Also let d̄ = ind(A1, A2, c̄) and for 1 ≤ i ≤ 2 let qi ≥ q −m − p. Then
RCq(A1 ⊗A2, c̄, C̄) = RCq1(A1, c̄1, C̄ ∩A1) ×(q,⊗, d̄) RCq2(A2, c̄2, C̄ ∩A2).

Lemma 8. Given R1 and R2, the tree cross product R1 ×(q,⊗, d̄) R2 can be
computed time poly(|R1|, |R2|), where |Ri| denotes the number of nodes in Ri.

Linear-Time Algorithms for Graphs of Bounded Rankwidth 11

We can now finally prove the Main Theorem.

Proof (Main Theorem). It is no loss of generality to assume that G has at least
one vertex. Otherwise deciding whether G |= ϕ takes constant time. By Lem-
mas 1, 2 and 3, to prove that G |= ϕ it is sufficient to show that the veri-
fier has a winning strategy in the model checking game MC(RCq(G), ϕ, ε, ε).
By Lemma 4, the size of the reduced characteristic tree RCq(G) of a t-labeled
graph is at most f1(q, t) for some computable function f1 of q and t alone.
By Lemma 8, the time taken to combine two reduced characteristic trees of
size f1(q, t) is f(q, t) = poly(f1(q, t)).

We claim that the total time taken to construct RCq(G) from its parse tree
decomposition T is O(f(q, t)·|T |). This is where we use the fact that the graph G
has rankwidth at most t. The proof is by induction on |T |. By Lemma 5, the
claim holds when |T | = 1. Suppose that Ḡ = Ḡ1 ⊗[g|h1, h2] Ḡ2, where g, h1, h2

are t-relabelings and let T1 and T2 be parse trees of Ḡ1 and Ḡ2, respectively.
Then |T | = |T1|+ |T2|+ 1, where T is a parse tree of Ḡ. By induction hypothe-
sis, one can construct the reduced characteristic trees RCq(G1) and RCq(G2) in
times O(f(q, t) · |T1|) and O(f(q, t) · |T2|), respectively. By Lemma 7, one can in-
deed construct RCq(G) given RCq(G1), RCq(G2) and d̄ = ε. By using Lemma 8,
the time taken to construct RCq(G) is O(f(q, t) + f(q, t) · |T1|+ f(q, t) · |T2|) =
O(f(q, t) · |T |), proving the claim.

In order to check whether the verifier has a winning strategy in the model
checking game MC(RCq(G), ϕ, ε, ε), one can use a very simple recursive algo-
rithm (see also [13]). A position p = (ψ, x̄, X̄, u) of the model checking game
can be identified with a call of the algorithm with arguments p. If ψ is uni-
versal, then the algorithm recursively checks whether the verifier has a winning
strategy from all positions u′ that are reachable from u in the model checking
game. If otherwise ψ is existential, then the algorithm checks whether there
is one subsequent position in the game from which the verifier has a win-
ning strategy. This algorithm visits each node of the reduced characteristic
tree RCq(G) at most once. Therefore the time taken to decide whether G |= ϕ
is O(f1(q, t) + f(q, t) · |T |) = O(f(q, t) · |T |), as claimed. ut

5 Discussion and Conclusion

With some additional effort the proof of the Main Theorem can be extended
to linear optimization problems expressible in MSO1 (the LinMSO-framework).
Moreover the results of this paper naturally extend to directed graphs and bi-
rankwidth. This allows us to conclude that any decision or optimization prob-
lem on directed graphs expressible in MSO1 is linear-time solvable on graphs of
bounded birankwidth [6, 18]. Finally, the game-theoretic approach has already
been used to prove Courcelle’s result for treewidth [3, 1, 8] with an emphasis on
practical implementability [19].

12 Alexander Langer, Peter Rossmanith, and Somnath Sikdar

References

1. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, 1991.

2. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathe-
matical Plays. A.K. Peters, 1982.

3. B. Courcelle. The monadic second order theory of Graphs I: Recognisable sets of
finite graphs. Information and Computation, 85:12–75, 1990.

4. B. Courcelle. Monadic second-order definable graph transductions: A survey.
Theor. Comput. Sci., 126(1):53–75, 1994.

5. B. Courcelle and M. M. Kante. Graph operations characterizing rank-width and
balanced graph expressions. In Proc. of WG, number 4769 in Lecture Notes in
Computer Science, pages 66–75. Springer, 2007.

6. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique Width. Theory Comput. Syst., 33:125–150,
2000.

7. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics, 108(1-2):23–52, 2001.

8. B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comput. Sci., 109(1-2):49–82, 1993.

9. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999.
10. S. Feferman and R. Vaught. The first order properties of algebraic systems. Fund.

Math, 47:57–103, 1959.
11. R. Ganian and P. Hliněený. On parse trees and Myhill–Nerode–type tools for

handling graphs of bounded rank-width. Disc. App. Math., 158(7):851–867, 2010.
12. R. Ganian, P. Hliněný, and J. Obdržálek. Unified approach to polynomial algo-

rithms on graphs of bounded (bi-)rank-width. Submitted, 2009.
13. E. Grädel. Finite model theory and descriptive complexity. In Finite Model Theory

and Its Applications, pages 125–230. Springer, 2007.
14. Y. Gurevich. Modest Theory of Short Chains. I. J. Symb. Log., 44(4):481–490,

1979.
15. Y. Gurevich. Monadic second-order theories. In S. F. Jon Barwise, editor, Model-

Theoretic Logics, pages 479–506. Springer-Verlag, 1985.
16. J. Hintikka. Logic, Language-Games and Information: Kantian Themes in the

Philosophy of Logic. Clarendon Press, 1973.
17. P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition.

SIAM Journal on Computing, 38:1012–1032, 2008.
18. M. M. Kante. The rankwidth of directed graphs. Preprint. Available at:

http://arxiv.org/abs/0709.1433, 2007.
19. J. Kneis, A. Langer, and P. Rossmanith. Courcelle’s Theorem – a game-theoretic

approach, 2010. submitted.
20. S. Oum. Graphs of Bounded Rankwidth. PhD thesis, Princeton University, 2005.
21. S. Oum and P. D. Seymour. Approximating clique-width and branch-width. Jour-

nal of Combinatorial Theory Series B, 96(4):514–528, 2006.
22. L. Øverlier and P. Syverson. Locating hidden servers. In Proceedings of the 2006

IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

