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Sparsity: r-shallow topological minor
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Sparsity: r-shallow topological minor

G Õ r :� The set of all r-shallow topological minors of G.

3



Sparsity: r-shallow topological minor

G Õ r :� The set of all r-shallow topological minors of G.

ω(G Õ r) � max

H∈G Õ r
ω(H) (clique size)
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Sparsity

Definition (Nowhere-dense)

A graph class G is nowhere-dense if there exists a function f ,
such that for all r and all G ∈ G, ω(G Õ r) ≤ f (r).

Definition (Somewhere-dense)

Agraph class Gis somewhere-dense if for all functions f there
exists an r and a G ∈ G, such that ω(G Õ r) > f (r).

G is not nowhere-dense⇔ G is somewhere-dense
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Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Typical Properties of Complex Networks

# low diameter (small world property)

# locally dense, but globally sparse

# heavy tail degree distribution

# clustering

# community structure

# scale freeness

5



Random Graphs

Random graphs with the goal of modeling real-world data:

# Mathematically analyzable

# Generation of in�nite instances
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Sparse in the limit

Definition (a.a.s. nowhere-dense)

Arandomgraphmodel Gis a.a.s. nowhere-dense if there exists

a function f such that for all r

lim

n→∞
P[ω(Gn Õ r) ≤ f (r)] � 1

where Gn is a random variable modeling a graph with n ver-

tices randomly drawn from G.
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Sparse in the limit

Definition (a.a.s. somewhere-dense)

A random graph model G is a.a.s. somewhere-dense if for all

functions f there exists an r, such that

lim

n→∞
P[ω(Gn Õ r) > f (r)] � 1

where Gn is a random variable modeling a graph with n ver-

tices randomly drawn from G.
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Sparse in the limit (not as clear cut)

Assume you have a random graph on n vertices, such that it is

with probability p complete and with probability 1 − p empty:

1. p � 1/n → a.a.s. nowhere-dense

2. p � 1 − 1/n → a.a.s. somewhere-dense

3. p � 1/2 → Neither!
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Preferential attachment graphs

“the rich get richer”, “preferential attachment”,

“Barabási–Albert graphs”

Start with some small �xed graph.

Add vertices. Connect them to m vertices

with a probability proportional to their

degrees.

Interesting properties:

# power law degree distribution

# scale free
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Preferential attachment graphs

m � 2, n � 100:

E[dn
m(vi)] ∼ m

√
n/i
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TAIL BOUNDS



Degree Concentrations

# Tail bounds exists for number of vertices with degree d.
[Bollobás et al. 2001]

# Via Martingales + Azuma-Hoe�ding inequality

# Does not work for large d (i.e. order

√
n)

# But we need high degree vertices!
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Concentration of a single vertex

No vertex is sharply concentrated!

P[dn
1
(vt) � 1] �

n∏
i�t

(1 − 1

2i − 1

) ≥ 1

n

We can not hope for general exponential bounds.
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Concentration of a single vertex

p

k
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Distribution of d10000

1
(v1).
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Concentration of a single vertex

p

k

0.02

0.01

0 250 500

Distribution of d10000

1
(v1) conditioned under d100

1
(v1) � 18.
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Concentration of a single vertex

p

k
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Distribution of d10000

1
(v1) conditioned under d1000

1
(v1) � 56.
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The rich stay rich

Theorem

Let 0 < ε ≤ 1/40, t ,m , n ∈ N, t > 1

ε6
and S ⊆ {v

1
, . . . , vt}. Then

P

[(1 − ε)
√

n
t

dt
m(S) < dn

m(S) < (1 + ε)
√

n
t

dt
m(S) for all n ≥ t ��� dt

m(S)]

≥ 1 − ln(15t)eε−O(1)dt
m (S).
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The rich stay rich

Theorem (The approximate version)

Let ε ≥ 0, t ,m , n ∈ N, and S ⊆ {v
1
, . . . , vt}:

P

[(1 − ε)E[dn
m(S)] < dn

m(S) < (1 + ε)E[dn
m(S)] ��� dt

m(S)] ≥ 1 − e−εdt
m (S)

# The rich stay rich

# At �rst there is chaos

# If we have information for t we can better predict n > t
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Proving the theorem
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Proving the theorem
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Proving the theorem
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SOMEWHERE-DENSE



Large cliques

Theorem

Gn
m contains a.a.s. a one-subdivided clique of size ∼ log(n).

Corollary

Gn
m is a.a.s. somewhere-dense for m ≥ 2.
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How we get principals

k sets of vertices

If a set of s vertices has degree d one vertex has to have degree

at least d/s.

→ Ensure with tail bounds it also has high degree in the future.
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Building cliques
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Connecting principals: Why we need
√

i
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Connecting principals: Why we need
√

i

Step i:

#
√

i red
#
√

i blue
# remainder black

Two balls drawn, success if red and blue
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Connecting principals: Why we need
√

i

1 −

∞∏
i�10

(
1 − 2

(√i
i

)
2

)
� 1
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Connecting principals: Why we need
√

i

1 −

∞∏
i�10

(
1 − 2

(√i/ log(i)
i

)
2

)
, 1
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CONCLUSION



Conclusion

# Tail bounds for vertices where we know an earlier degree

# Tail bounds could be used to prove further structure

# Preferential Attachment graphs are a.a.s. somewhere-dense

# FO-model checking algorithm not directly applicable

# What about more general PA-graphs with δ parameter?

◦ δ � 0: Our model

◦ δ � ∞: Uniform attachment
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