PREFERENTIAL ATTACHMENT GRAPHS ARE SOMEWHERE-DENSE

Jan Dreier, Philipp Kuinke, Peter Rossmanith

TACO 2018

RWTH Aachen University

MOTIVATION

Image by Felix Reidl

 $G \ \overline{\lor} r :=$ The set of all *r*-shallow topological minors of *G*.

 $G \widetilde{\nabla} r :=$ The set of all *r*-shallow topological minors of *G*.

$$\omega(G \,\widetilde{\nabla}\, r) = \max_{H \in G \,\widetilde{\nabla}\, r} \,\omega(H) \quad \text{(clique size)}$$

Definition (Nowhere-dense)

A graph class \mathcal{G} is nowhere-dense if there exists a function f, such that for all r and all $G \in \mathcal{G}$, $\omega(G \ \overline{\forall} \ r) \leq f(r)$.

Definition (Nowhere-dense)

A graph class \mathcal{G} is nowhere-dense if there exists a function f, such that for all r and all $G \in \mathcal{G}$, $\omega(G \ \overline{\forall} \ r) \leq f(r)$.

Definition (Somewhere-dense)

A graph class \mathcal{G} is somewhere-dense if for all functions f there exists an r and a $G \in \mathcal{G}$, such that $\omega(G \overline{\heartsuit} r) > f(r)$.

Definition (Nowhere-dense)

A graph class \mathcal{G} is nowhere-dense if there **exists** a function f, such that for all r and all $G \in \mathcal{G}$, $\omega(G \ \overline{\forall} \ r) \leq f(r)$.

Definition (Somewhere-dense)

A graph class \mathcal{G} is somewhere-dense if for all functions f there exists an r and a $G \in \mathcal{G}$, such that $\omega(G \overline{\heartsuit} r) > f(r)$.

 \mathcal{G} is not nowhere-dense $\Leftrightarrow \mathcal{G}$ is somewhere-dense

○ low diameter (small world property)

○ low diameter (small world property)

○ locally dense, but globally sparse

○ low diameter (small world property)

○ locally dense, but globally sparse

○ heavy tail degree distribution

- low diameter (small world property)
- \bigcirc locally dense, but globally sparse
- heavy tail degree distribution
- clustering

- low diameter (small world property)
- \bigcirc locally dense, but globally sparse
- heavy tail degree distribution
- clustering
- community structure

- low diameter (small world property)
- \bigcirc locally dense, but globally sparse
- heavy tail degree distribution
- clustering
- community structure
- scale freeness

Random Graphs

Random graphs with the goal of modeling real-world data:

○ Mathematically analyzable

○ Generation of infinite instances

Definition (a.a.s. nowhere-dense)

A random graph model \mathcal{G} is a.a.s. nowhere-dense if there exists a function f such that for all r

$$\lim_{n\to\infty} \mathbb{P}[\omega(G_n\,\widetilde{\nabla}\,r) \leq f(r)] = 1$$

where G_n is a random variable modeling a graph with n vertices randomly drawn from \mathcal{G} .

Definition (a.a.s. somewhere-dense)

A random graph model \mathcal{G} is a.a.s. somewhere-dense if for all functions f there exists an r, such that

$$\lim_{n\to\infty} \mathbb{P}[\omega(G_n\,\widetilde{\nabla}\,r) > f(r)] = 1$$

where G_n is a random variable modeling a graph with n vertices randomly drawn from \mathcal{G} .

1. p = 1/n

1.
$$p = 1/n$$
 \rightarrow a.a.s. nowhere-dense

1.
$$p = 1/n \rightarrow a.a.s.$$
 nowhere-dense

2. p = 1 - 1/n

1.
$$p = 1/n \rightarrow a.a.s.$$
 nowhere-dense

2.
$$p = 1 - 1/n \rightarrow a.a.s.$$
 somewhere-dense

1.
$$p = 1/n \rightarrow a.a.s.$$
 nowhere-dense

2.
$$p = 1 - 1/n \rightarrow a.a.s.$$
 somewhere-dense

3. p = 1/2

1.
$$p = 1/n \rightarrow a.a.s.$$
 nowhere-dense

2.
$$p = 1 - 1/n \rightarrow a.a.s.$$
 somewhere-dense

3. $p = 1/2 \rightarrow$ Neither!

"the rich get richer", "preferential attachment", "Barabási–Albert graphs"

Start with some small fixed graph.

Add vertices. Connect them to *m* vertices with a probability proportional to their degrees.

Interesting properties:

○ power law degree distribution

 \bigcirc scale free

Preferential attachment graphs

Preferential attachment graphs

 $\mathrm{E}[d_m^n(v_i)] \sim m \sqrt{n/i}$

TAIL BOUNDS

Tail bounds exists for number of vertices with degree *d*.
 [Bollobás et al. 2001]

- Tail bounds exists for number of vertices with degree *d*.
 [Bollobás et al. 2001]
- Via Martingales + Azuma-Hoeffding inequality

- Tail bounds exists for number of vertices with degree *d*.
 [Bollobás et al. 2001]
- Via Martingales + Azuma-Hoeffding inequality
- \bigcirc Does not work for large *d* (i.e. order \sqrt{n})

- Tail bounds exists for number of vertices with degree *d*.
 [Bollobás et al. 2001]
- Via Martingales + Azuma-Hoeffding inequality
- \bigcirc Does not work for large *d* (i.e. order \sqrt{n})
- But we need high degree vertices!

No vertex is sharply concentrated!
$\mathbf{P}[d_1^n(v_t)=1]$

$$P[d_1^n(v_t) = 1] = \prod_{i=t}^n (1 - \frac{1}{2i - 1})$$

$$P[d_1^n(v_t) = 1] = \prod_{i=t}^n (1 - \frac{1}{2i - 1}) \ge \frac{1}{n}$$

$$\mathbb{P}[d_1^n(v_t) = 1] = \prod_{i=t}^n (1 - \frac{1}{2i - 1}) \ge \frac{1}{n}$$

We can not hope for general *exponential* bounds.

Concentration of a single vertex

Concentration of a single vertex

Distribution of $d_1^{10000}(v_1)$ conditioned under $d_1^{100}(v_1) = 18$.

Concentration of a single vertex

Theorem

Let $0 < \varepsilon \le 1/40, t, m, n \in \mathbb{N}, t > \frac{1}{\varepsilon^6}$ and $S \subseteq \{v_1, \dots, v_t\}$. Then

$$P\Big[(1-\varepsilon)\sqrt{\frac{n}{t}}d_m^t(S) < d_m^n(S) < (1+\varepsilon)\sqrt{\frac{n}{t}}d_m^t(S) \text{ for all } n \ge t \mid d_m^t(S)\Big]$$
$$\ge 1 - \ln(15t)e^{\varepsilon^{-O(1)}d_m^t(S)}.$$

Let $\varepsilon \ge 0, t, m, n \in \mathbb{N}$, and $S \subseteq \{v_1, \ldots, v_t\}$:

 $\mathbb{P}\Big[(1-\varepsilon)\mathbb{E}[d_m^n(S)] < d_m^n(S) < (1+\varepsilon)\mathbb{E}[d_m^n(S)] \mid d_m^t(S)\Big] \ge 1 - e^{-\varepsilon d_m^t(S)}$

Let $\varepsilon \ge 0, t, m, n \in \mathbb{N}$, and $S \subseteq \{v_1, \dots, v_t\}$: $P\left[(1-\varepsilon) \mathbb{E}[d_m^n(S)] < d_m^n(S) < (1+\varepsilon) \mathbb{E}[d_m^n(S)] \mid d_m^t(S)\right] \ge 1 - e^{-\varepsilon d_m^t(S)}$

○ The rich stay rich

Let $\varepsilon \ge 0, t, m, n \in \mathbb{N}$, and $S \subseteq \{v_1, \dots, v_t\}$: $P\left[(1-\varepsilon) \operatorname{E}[d_m^n(S)] < d_m^n(S) < (1+\varepsilon) \operatorname{E}[d_m^n(S)] \mid d_m^t(S)\right] \ge 1 - e^{-\varepsilon d_m^t(S)}$

○ The rich stay rich

○ At first there is chaos

Let $\varepsilon \ge 0, t, m, n \in \mathbb{N}$, and $S \subseteq \{v_1, \dots, v_t\}$: $P\left[(1-\varepsilon) \operatorname{E}[d_m^n(S)] < d_m^n(S) < (1+\varepsilon) \operatorname{E}[d_m^n(S)] \mid d_m^t(S)\right] \ge 1 - e^{-\varepsilon d_m^t(S)}$

○ The rich stay rich

○ At first there is chaos

 \bigcirc If we have information for *t* we can better predict *n* > *t*

Proving the theorem

Proving the theorem

Proving the theorem

Somewhere-Dense

Theorem

 G_m^n contains a.a.s. a one-subdivided clique of size ~ log(n).

Theorem

 G_m^n contains a.a.s. a one-subdivided clique of size ~ log(n).

Corollary

 G_m^n is a.a.s. somewhere-dense for $m \ge 2$.

k sets of vertices

k sets of vertices

If a set of *s* vertices has degree *d* one vertex has to have degree at least d/s.

k sets of vertices

If a set of *s* vertices has degree *d* one vertex has to have degree at least d/s.

 \rightarrow Ensure with tail bounds it also has high degree in the future.

Building cliques

Connecting principals: Why we need \sqrt{i}

Connecting principals: Why we need \sqrt{i}

Step *i*:

- $\bigcirc \sqrt{i}$ red
- $\bigcirc \sqrt{i}$ blue
- remainder black

Two balls drawn, success if red and blue

Connecting principals: Why we need \sqrt{i}

$$1 - \prod_{i=10}^{\infty} \left(1 - 2\left(\frac{\sqrt{i}}{i}\right)^2 \right) = 1$$

$$1 - \prod_{i=10}^{\infty} \left(1 - 2\left(\frac{\sqrt{i}/\log(i)}{i}\right)^2 \right) \neq 1$$

○ Tail bounds for vertices where we know an earlier degree

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure
- Preferential Attachment graphs are a.a.s. somewhere-dense

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure
- Preferential Attachment graphs are a.a.s. somewhere-dense
- FO-model checking algorithm not directly applicable

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure
- Preferential Attachment graphs are a.a.s. somewhere-dense
- FO-model checking algorithm not directly applicable
- \bigcirc What about more general PA-graphs with δ parameter?

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure
- Preferential Attachment graphs are a.a.s. somewhere-dense
- FO-model checking algorithm not directly applicable
- \bigcirc What about more general PA-graphs with δ parameter?
 - $\delta = 0$: Our model

- Tail bounds for vertices where we know an earlier degree
- Tail bounds could be used to prove further structure
- O Preferential Attachment graphs are a.a.s. somewhere-dense
- FO-model checking algorithm not directly applicable
- \bigcirc What about more general PA-graphs with δ parameter?
 - $\delta = 0$: Our model
 - $\delta = \infty$: Uniform attachment

- Barabási, Albert-László and Réka Albert (1999). "Emergence of scaling in random networks". In: *Science* 286.5439, pp. 509–512.
 Béla Bollobás Oliver Riordan, Joel Spencer and Gábor Tusnády (2001). "The Degree Sequence of a Scale-free Random Graph Process". In: *Random Struct. Algorithms* 18.3, pp. 279–290. ISSN: 1042-9832.
 Martin Grohe, Stephan Kreutzer and Sebastian Siebertz (2017).
 - Martin Grohe, Stephan Kreutzer and Sebastian Siebertz (2017). "Deciding First-Order Properties of Nowhere Dense Graphs". In: *Journal of the ACM* 64.3, p. 17.
- Nešetřil, Jaroslav and Patrice Ossona de Mendez (2012). *Sparsity*. Springer.
 - Van Der Hofstad, Remco (2016). *Random graphs and complex networks*. Vol. 1. Cambridge University Press.