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MOTIVATION



The Problem

Shared segments between DNA/RNA strands create ambiguity
in the assembly problem
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The Problem

Connecting overlapping segments and counting their
frequencies yields a splice-graph.
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The Problem

The problem is to split the �ow into s-t-paths, to recover the
original DNA/RNA strands.
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The Problem

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f ) using
at most k paths.

k-Flow Decomposition (k-FD)
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Computer Scientists. . .

About ten years ago, some computer scientists came by and
said they heard we have some really cool problems. They
showed that the problems are NP-complete and went away!

-Joseph Felsenstein (Biologist)
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Linear FPT

cn vs. dk
· n

linear fpt: exponential only in the parameter and linear in n!
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Observations

Data used by Shao and Kingsford:

1. 99% of instances decompose into ≤ 8 paths.
→ exploit small natural parameter.

2. ∼4 million mostly small instances.
→ handle large throughput.

3. Output decompositions.
→ reliably recover domain-speci�c solution.
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Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

# Worst-case run-time is linear in n
# Guarantees optimal solution

◦ Gives opportunity to validate the model

# Run-time competitive with current state of the art heuristic
# Usable in practice
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IMPLEMENTATION & EXPERIMENTS



Repository

https://github.com/theoryinpractice/toboggan

14

https://github.com/theoryinpractice/toboggan


Setup

Dataset: Available from Shao and Kingsford.
Simulated sequencing data for human, mouse
and zebrafish, containing ground-truth.

Deviation from original setup:
Trivial instances omitted.
Removes around 64% of the 4M graphs.

Dedicated system with Intel i7-3770:
3.40 GHz, 8 MB cache and 32 GB RAM.
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Execution Time

Median:
Toboggan: 1.24ms
Catfish: 3.47ms
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Ground Truth Validation

dataset instances minimal non-minimal

zebrafish 445,880 99.907% 0.053%
mouse 473,185 99.401% 0.074%
human 529,523 99.490% 0.043%

all 1,448,588 99.589% 0.056%
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Exact Recovery

k instances Catfish Toboggan

2 63.2791% 0.992 0.995
3 22.0775% 0.967 0.969
4 8.5237% 0.931 0.930
5 3.4920% 0.886 0.886
6 1.5375% 0.830 0.828
7 0.6698% 0.788 0.780
8 0.2889% 0.767 0.766
9 0.1241% 0.740 0.743
10 0.0070% 0.752 0.802
11 0.0004% 0.500 0.500

all 100% 0.973 0.975
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Solutions vs. Ground Truth

19



ALGORITHM IDEA
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Dynamic Programming
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CONCLUSION



Conclusion

# Theoretical worst-case runtime linear in n.

# Competitive runtime with heuristics.
# Guarantees optimal k.
# Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan
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