
COMPUTING OPTIMAL FLOW
DECOMPOSITIONS FOR ASSEMBLY

Kyle Kloster, Philipp Kuinke, Michael P. O’Brien, Felix
Reidl, Fernando Sánchez Villaamil, Blair D. Sullivan,
Andrew van der Poel

2018/03/27

North Carolina State University
RWTH Aachen University

MOTIVATION

The Problem

Shared segments between DNA/RNA strands create ambiguity
in the assembly problem

2

The Problem

Connecting overlapping segments and counting their
frequencies yields a splice-graph.

3

The Problem

4

The Problem

The problem is to split the �ow into s-t-paths, to recover the
original DNA/RNA strands.

5

The Problem

6

The Problem

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f) using
at most k paths.

k-Flow Decomposition (k-FD)

7

Related Work

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f) using
at most k paths.

k-Flow Decomposition (k-FD)

How do we choose k?
→minimization

A novel min-cost �ow method for estimating transcript expression with RNA-Seq.
A.I. Tomescu et. al.
E�cient Heuristic for Decomposing a Flow with Minimum Number of Paths.
M. Shao & C. Kingsford

Problem is NP-hard even for weights {1, 2, 4}
How to split a �ow?
T. Hartman et. al.

8

Related Work

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f) using
at most k paths.

k-Flow Decomposition (k-FD)

How do we choose k?

→minimization
A novel min-cost �ow method for estimating transcript expression with RNA-Seq.
A.I. Tomescu et. al.
E�cient Heuristic for Decomposing a Flow with Minimum Number of Paths.
M. Shao & C. Kingsford

Problem is NP-hard even for weights {1, 2, 4}
How to split a �ow?
T. Hartman et. al.

8

Related Work

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f) using
at most k paths.

k-Flow Decomposition (k-FD)

How do we choose k?
→minimization

A novel min-cost �ow method for estimating transcript expression with RNA-Seq.
A.I. Tomescu et. al.
E�cient Heuristic for Decomposing a Flow with Minimum Number of Paths.
M. Shao & C. Kingsford

Problem is NP-hard even for weights {1, 2, 4}
How to split a �ow?
T. Hartman et. al.

8

Related Work

Input: (G, f , k) with an s-t–DAG G, a �ow f on G, and
a positive integer k.

Problem: Find an integral �ow decomposition of (G, f) using
at most k paths.

k-Flow Decomposition (k-FD)

How do we choose k?
→minimization

A novel min-cost �ow method for estimating transcript expression with RNA-Seq.
A.I. Tomescu et. al.
E�cient Heuristic for Decomposing a Flow with Minimum Number of Paths.
M. Shao & C. Kingsford

Problem is NP-hard even for weights {1, 2, 4}
How to split a �ow?
T. Hartman et. al.

8

Computer Scientists. . .

About ten years ago, some computer scientists came by and
said they heard we have some really cool problems. They
showed that the problems are NP-complete and went away!

-Joseph Felsenstein (Biologist)

9

Computer Scientists. . .

About ten years ago, some computer scientists came by and
said they heard we have some really cool problems. They
showed that the problems are NP-complete and went away!

-Joseph Felsenstein (Biologist)

9

Linear FPT

cn vs. dk
· n

linear fpt: exponential only in the parameter and linear in n!

10

Observations

Data used by Shao and Kingsford:

1. 99% of instances decompose into ≤ 8 paths.
→ exploit small natural parameter.

2. ∼4 million mostly small instances.
→ handle large throughput.

3. Output decompositions.
→ reliably recover domain-speci�c solution.

11

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n
Guarantees optimal solution

◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic
Usable in practice

12

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n

Guarantees optimal solution
◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic
Usable in practice

12

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n
Guarantees optimal solution

◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic
Usable in practice

12

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n
Guarantees optimal solution

◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic
Usable in practice

12

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n
Guarantees optimal solution

◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic

Usable in practice

12

Toboggan

Theorem

Toboggan solves k-FD in 2O(k2)(n + λ), where λ is the logarithm of
the largest �ow value.

Worst-case run-time is linear in n
Guarantees optimal solution

◦ Gives opportunity to validate the model

Run-time competitive with current state of the art heuristic
Usable in practice

12

IMPLEMENTATION & EXPERIMENTS

Repository

https://github.com/theoryinpractice/toboggan

14

https://github.com/theoryinpractice/toboggan

Setup

Dataset: Available from Shao and Kingsford.
Simulated sequencing data for human, mouse
and zebrafish, containing ground-truth.

Deviation from original setup:
Trivial instances omitted.
Removes around 64% of the 4M graphs.

Dedicated system with Intel i7-3770:
3.40 GHz, 8 MB cache and 32 GB RAM.

15

Setup

Dataset: Available from Shao and Kingsford.
Simulated sequencing data for human, mouse
and zebrafish, containing ground-truth.

Deviation from original setup:
Trivial instances omitted.
Removes around 64% of the 4M graphs.

Dedicated system with Intel i7-3770:
3.40 GHz, 8 MB cache and 32 GB RAM.

15

Setup

Dataset: Available from Shao and Kingsford.
Simulated sequencing data for human, mouse
and zebrafish, containing ground-truth.

Deviation from original setup:
Trivial instances omitted.
Removes around 64% of the 4M graphs.

Dedicated system with Intel i7-3770:
3.40 GHz, 8 MB cache and 32 GB RAM.

15

Execution Time

Median:
Toboggan: 1.24ms
Catfish: 3.47ms

16

Ground Truth Validation

dataset instances minimal non-minimal

zebrafish 445,880 99.907% 0.053%
mouse 473,185 99.401% 0.074%
human 529,523 99.490% 0.043%

all 1,448,588 99.589% 0.056%

17

Exact Recovery

k instances Catfish Toboggan

2 63.2791% 0.992 0.995
3 22.0775% 0.967 0.969
4 8.5237% 0.931 0.930
5 3.4920% 0.886 0.886
6 1.5375% 0.830 0.828
7 0.6698% 0.788 0.780
8 0.2889% 0.767 0.766
9 0.1241% 0.740 0.743
10 0.0070% 0.752 0.802
11 0.0004% 0.500 0.500

all 100% 0.973 0.975
18

Solutions vs. Ground Truth

19

ALGORITHM IDEA

The Idea

s t
3

3

2

1

5

1

3

3

4

21

The Idea

s t
3

3

2

1

5

1

3

3

4

w + w � 3
w � 3
w � 2

22

The Idea

s t
3

3

2

1

5

1

3

3

4

w + w � 3
w � 3
w � 2

22

The Idea

s t
3

3

2

1

5

1

3

3

4

w + w � 3
w � 3
w � 2

w � 1
w + w � 5

w � 1

Aw � f

22

The Idea

s t
3

3

2

1

5

1

3

3

4

w + w � 3
w � 3
w � 2

w � 1
w + w � 5

w � 1

Aw � f

22

The Idea

s t
3

3

2

1

5

1

3

3

4

w + w � 3
w � 3
w � 2

w � 1
w + w � 5

w � 1

Aw � f

22

Dynamic Programming

.
Si−1

↓

.
Si

↓

.
Si+1

g1 , L1

g2 , L2 g3 , L3

g4 , L4 g5 , L5

g6 , L6 g7 , L7

g8 , L8
g9 , L9

g10 , L10
g11 , L11

X

23

Dynamic Programming

.
Si−1

↓

.
Si

↓

.
Si+1

g1 , L1

g2 , L2 g3 , L3

g4 , L4 g5 , L5

g6 , L6 g7 , L7

g8 , L8
g9 , L9

g10 , L10
g11 , L11

X

23

CONCLUSION

Conclusion

Theoretical worst-case runtime linear in n.

Competitive runtime with heuristics.
Guarantees optimal k.
Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan

25

https://arxiv.org/abs/1706.07851
https://github.com/theoryinpractice/toboggan

Conclusion

Theoretical worst-case runtime linear in n.
Competitive runtime with heuristics.

Guarantees optimal k.
Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan

25

https://arxiv.org/abs/1706.07851
https://github.com/theoryinpractice/toboggan

Conclusion

Theoretical worst-case runtime linear in n.
Competitive runtime with heuristics.
Guarantees optimal k.

Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan

25

https://arxiv.org/abs/1706.07851
https://github.com/theoryinpractice/toboggan

Conclusion

Theoretical worst-case runtime linear in n.
Competitive runtime with heuristics.
Guarantees optimal k.
Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan

25

https://arxiv.org/abs/1706.07851
https://github.com/theoryinpractice/toboggan

Conclusion

Theoretical worst-case runtime linear in n.
Competitive runtime with heuristics.
Guarantees optimal k.
Python already fast, C++ even faster?

paper: https://arxiv.org/abs/1706.07851

github: https://github.com/theoryinpractice/toboggan

25

https://arxiv.org/abs/1706.07851
https://github.com/theoryinpractice/toboggan

Kyle Kloster, Philipp Kuinke, Michael P. O’Brien, Felix Reidl,
Fernando Sánchez Villaamil, Blair D. Sullivan, Andrew van
der Poel

Thank you!
Supported in part by the Gordon & Betty Moore Foundation’s Data-Driven Discovery

Initiative through Grant GBMF4560 to Blair D. Sullivan.

26

