A practical fpt algorithm for Flow Decomposition and transcript assembly Kyle Kloster, Philipp Kuinke, Michael P. O'Brien, Felix Reidl, Fernando Sánchez Villaamil, Blair D. Sullivan, Andrew van der Poel

NC STATE UNIVERSITY

RNTHAACHEN UNIVERSITY

The Motivation

The Algorithm

Shared segments between DNA/RNA strands create ambiguity in the assembly problem.

Connecting overlapping segments and counting their frequencies yields a DAG and a flow. The problem is to split the flow into the least amount of *s*-*t*-paths, to recover the original DNA/RNA strands.

The routing g out of S_3 (dashed lines) is an extension of the previous routings (solid paths). Each row in the constraint system L on the right corresponds to an arc; those shaded in gray are from arcs inside S_3 , and those in white come from g.

The Problem

-k-Flow Decomposition (k-FD)

Input: (G, f, k) with G an s-t-DAG, f a flow on G, and k a positive integer. Problem: Is there an integral flow decomposition of (G, f)using at most k paths? About ten years ago, some computer scientists came by and said they heard we have some really cool problems. They showed that the problems are NPcomplete and went away!

-Joseph Felsenstein (Biologist)

$w_{\bullet} = 1 \qquad w_{\bullet} = 3 \qquad w_{\bullet} = 2 \qquad w_{\bullet} = 1$

The Results

dataset	instances	non-trivial	optimal	non-optimal
zebrafish	1,549,373	445,880	99.907%	0.053%
mouse	1,316,058	473,185	99.401%	0.074%
human	1,169,083	529,523	99.490%	0.043%
all	4,034,514	1,448,588	99.589%	0.056%

_	k	instances	Catfish	Toboggan
-	2	63.2791%	0.992	0.995
	3	22.0775%	0.967	0.969
	4	8.5237%	0.931	0.930
	5	3.4920%	0.886	0.886
	6	1.5375%	0.830	0.828
	7	0.6698%	0.788	0.780
	8	0.2889%	0.767	0.766
	9	0.1241%	0.740	0.743
	10	0.0070%	0.752	0.802
	11	0.0004%	0.500	0.500

Runtime (seconds)

all 100% 0.973 **0.975**

Runtimes of **Toboggan** and **Catfish** on all non-trivial instances. The *y*-axes indicate the number of instances on which the algorithms terminate in the given time window.

Since **Toboggan** finds optimal decompositions we can investigate the Groundtruth for optimality.

All data.

Acknowledgments

Resources

This work is supported in part by the Gordon & Betty Moore Foundations Data- Driven Discovery Initiative through Grant GBMF4560 to Blair D. Sullivan.

The implemented solver is available on Github: /theoryinpractice/toboggan

