
Dithering

Max Tirdatov

Seminar: PostScript, WS 2022/23

RWTH Aachen University



Motivation



Problem statement

• Color depth is the number of bits available for color information per pixel

• When the color depth is reduced, how can the original color be imitated?

• Even these days, the question often comes up in printing, computer graphics and
digital art

1



Computer graphics

• In the mid-1990s: 216 web-safe colors

• GIF only supports 8 bits per pixel

Source: https://commons.wikimedia.org/wiki/File:GIFPAL.png

2

https://commons.wikimedia.org/wiki/File:GIFPAL.png


Digital art

Source: https://pixelparmesan.com/dithering-for-pixel-artists/, https://obradinn.com/

3

https://pixelparmesan.com/dithering-for-pixel-artists/
https://obradinn.com/


Naive approaches



Fixed threshold

• The goal is to convert an 8 bpp grayscale image to a 1 bpp image with only pure
black (0) and pure white (1)

• Assume the shades of gray are values between 0 and 1
• Idea: compare each pixel with a fixed threshold value

output =

0, input < 0.5

1, otherwise

→

• Detail is missing, no illusion of color depth
Source: Dietmar Rabich, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:San_Francisco_(CA,_USA),_Golden_Gate_Bridge_--_2022_--_3023_(bw).jpg 4

https://commons.wikimedia.org/wiki/File:San_Francisco_(CA,_USA),_Golden_Gate_Bridge_--_2022_--_3023_(bw).jpg


Color banding

• Generalization: a threshold t ∈ [0, 1] which specifies a color level between the
nearest available ones to compare against

• PostScript uses a similar approach (discussed later)
• Example with linear interpolation between nearest levels A, B :

output =

A, input < (1 − t)A+ tB

B, otherwise

→

• Using a fixed threshold results in clearly visible color bands
5



Random dithering

• Idea: use a random threshold for each pixel

output =

0, input < random()

1, otherwise

→

• 30%-gray pixels are quantized to white about 30% of the time
• Can we do better than that?

6



Ordered dithering



Ordered dithering

• Idea: threshold pattern as an m-by-n matrix M

• Threshold now depends on pixel coordinates x , y :

output =

0, input < Mx mod m, y mod n

1, otherwise

• Threshold values should be uniformly distributed to keep the probabilistic property
of random dithering

• The matrix is to be chosen with care

7



Bayer matrix

• Recursive definition:

D2 =

[
0 2
3 1

]
, D2n =

[
4Dn + D2

00 4Dn + D2
01

4Dn + D2
10 4Dn + D2

11

]
=

[
4Dn + 0 4Dn + 2
4Dn + 3 4Dn + 1

]

• Dn is an n-by-n matrix filled with all integers from 0 to n2 − 1

• Mn := 1
n2 · Dn can be used as a threshold map

• Example: M4 =
1
16

·


0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5


8



Bayer dithering

Original

Dithered with M4

Dithered with M2

Dithered with M8
9



Blue noise

• Like in blue light, higher frequencies have higher intensities
• Can be tiled seamlessly for that reason

White noise tiling Blue noise tiling
• Isotropic: frequency decomposition does not depend on the viewing angle

Source: http://momentsingraphics.de/BlueNoise.html 10

http://momentsingraphics.de/BlueNoise.html


Blue noise dithering

• Void-and-cluster method can be used to generate blue noise
• The key part is finding areas in a 1bpp image where dot density is highest

(clusters) or lowest (voids), then removing or adding dots from/to that area
• Needs to be precomputed since generation takes time

→

Dithering with a 64 × 64 threshold map generated by void-and-cluster method

11



Error diffusion



Error diffusion

• Rounding to the nearest available color level results in quantization error:

error = input− output

• Idea: spread the error to neighboring pixels to compensate for it later

• Thus, if a pixel is quantized to a darker shade, its neighbors are more likely to be
quantized to a lighter shade, and vice versa

• In its simplest form: add the error to the pixel to the right of the current one

• More involved distributions produce better results

12



Example

• Parallelization is not straightforward

13



Floyd–Steinberg dithering

for each y from top to bottom do
for each x from left to right do

oldpixel := pixels[y ][x ]

newpixel := findNearestPaletteColor(oldpixel)
pixel [y ][x ] := newpixel

error := oldpixel − newpixel

pixel [y ][x + 1] += 7
16 · error

pixel [y + 1][x − 1] += 3
16 · error

pixel [y + 1][x ] += 5
16 · error

pixel [y + 1][x + 1] += 1
16 · error

end for
end for

• Intermediate pixel values exceeding the valid range need to be handled correctly
• Care needs to be taken at image edges

14



Floyd–Steinberg dithering

→

15



Other methods

• Floyd–Steinberg:
1
16

·

(
∗ 7

3 5 1

)

• Jarvis–Judice–Ninke:
1
48

·

 ∗ 7 5
3 5 7 5 3
1 3 5 3 1


• Atkinson:

1
8
·

 ∗ 1 1
1 1 1

1


• And many more...

Jarvis–Judice–Ninke

Atkinson
16



Halftone



Halftone

• Traditionally, variously sized round dots of ink
were used to produce different color shades

• The dots can be approximated with bitmaps:

↓

• This is PostScript’s first supported approach

• Output resolution must be higher in order to
preserve detail

Source: https://commons.wikimedia.org/wiki/File:Statues_of_Abraham_Lincoln_(1915)_(14597861910).jpg

17

https://commons.wikimedia.org/wiki/File:Statues_of_Abraham_Lincoln_(1915)_(14597861910).jpg


PostScript halftone dictionaries

• Dictionary syntax: << key1 value1 key2 value2 ... keyn valuen >>

• Halftone dictionaries are used to configure halftone screen parameters
• Retrieve current halftone dictionary: – currenthalftone dict
• Set a new one: dict sethalftone –

• Several types of halftone dictionaries are available

18



Type 1 halftone dictionaries

• Defines a single halftone screen by a frequency, angle and spot function

• The screen is made up of cells, each covering a certain number of device pixels

• Frequency determines the number of cell lines per inch (lpi)

• Each pixel has coordinates within its cell’s coordinate system, where the range for
both x and y is from −1.0 to +1.0

• The coordinates are passed to the spot function which outputs a number between
−1.0 and +1.0

• The output determines how soon the pixel turns white as the cell’s gray level varies
from black to white

19



Simple spot functions

• Line screen
• Measure the distance from the x axis
• As a function: f (x , y) = y2

• {exch pop dup mul}

• Round dot screen
• Measure the distance from the origin
• As a function: f (x , y) = x2+y2

2
• {dup mul exch dup mul add 2 div}

20



Code

Code to produce the line screen example from previous slide:

<<
/BeginPage {

<<
/HalftoneType 1
/Frequency 18
/Angle 45
/SpotFunction {exch pop dup mul}

>> sethalftone
}

>> setpagedevice

21



Type 3 halftone dictionaries

• Defines a single halftone screen by a threshold array containing 8-bit sample values
taken from a string

• Enables implementation of fixed threshold, random and ordered dithering

• 8-bit threshold values instead of t ∈ [0, 1]

• Stored in a string that is essentially a byte array:

D4 =

 0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

 ×16−−−→

 0 128 32 160
192 64 224 96
48 176 16 144
240 112 208 80

→ <008020A0C040E06030B01090F070D050>︸ ︷︷ ︸
PostScript hexadecimal string

22



Code

Code to dither with the 4-by-4 Bayer matrix:

<<
/BeginPage {

<<
/HalftoneType 3
/Width 4
/Height 4
/Thresholds <008020A0C040E06030B01090F070D050>

>> sethalftone
}

>> setpagedevice

23



Type 5 halftone dictionaries

• Defines an arbitrary number of halftone screens,
one for each color component

• Keys are names of color components, such as
/Cyan, /Magenta, /Yellow and /Black for
CMYK space

• Values are halftone dictionaries of other types

Source: https://commons.wikimedia.org/wiki/File:Halftoningcolor.svg

24

https://commons.wikimedia.org/wiki/File:Halftoningcolor.svg


Transfer functions

• A transfer function can be used to adjust pixel values before halftone is applied

• Can be specified via optional /TransferFunction key

• Useful for gamma correction: Clinear =


Csrgb

12.92
, Csrgb ≤ 0.04045(

Csrgb + 0.055
1.055

)2.4

, Csrgb > 0.04045

No transfer function:

Original:

With gamma correction:

25



Questions?

25



Comparison

Ordered dithering Error diffusion
⊕ Parallelization is straightforward ⊖ Parallelization is challenging
⊕ Suitable for animations ⊖ Too unpredictable
⊖ Tends to blur images ⊕ Tends to enhance edges, making text

more readable

Source: https://commons.wikimedia.org/wiki/File:Signs_in_Gibraltar_Dec_2004.jpg (CC BY-SA 3.0)

https://commons.wikimedia.org/wiki/File:Signs_in_Gibraltar_Dec_2004.jpg


Ghostscript output devices

• Halftone dictionary is only consulted when the output color depth is not sufficient

• Color depth differs across output devices

• Use -sDEVICE and -sOutputFile options to set output device and file

• Some devices like pngmonod ignore the halftone dictionary and apply error diffusion
instead

• Images produced by pngmono, pngmonod and png256 devices have been used
throughout this presentation

• Full list available at Ghostscript website



References i

Adobe Systems Inc.
PostScript Language Reference.
Addison-Wesley Publishing Company, 3 edition, 1999.

Artifex Software Inc.
Details of Ghostscript Output Devices.
https://ghostscript.com/docs/9.54.0/Devices.htm.

Surma.
Ditherpunk — The article I wish I had about monochrome image dithering.
https://surma.dev/things/ditherpunk/.

https://ghostscript.com/docs/9.54.0/Devices.htm
https://surma.dev/things/ditherpunk/


References ii

John F. Jarvis, Charlie Judice, and William H. Ninke.
A survey of techniques for the display of continuous tone pictures on
bilevel displays.
Computer Graphics and Image Processing, 5:13–40, 1976.

Robert Ulichney.
Void-and-cluster method for dither array generation.
In Electronic imaging, 1993.

Wikipedia contributors.
Wikipedia articles: Dither, Ordered dithering, Error diffusion, Floyd–Steinberg
dithering, Atkinson dithering, Halftone.
https://en.wikipedia.org/.

https://en.wikipedia.org/

	Motivation
	Naive approaches
	Ordered dithering
	Error diffusion
	Halftone
	Appendix

