
Baker’s approximation scheme for planar graphs

Philip Whittington

Seminar: Algorithms on Sparse Graphs

Supervisors: Jan Dreier, Philipp Kuinke
RWTH Aachen University

CONTENTS

I. Introduction 1
A. Planar graphs 1
B. Approximation algorithms 1
C. Fixed parameter tractability 1
D. Dynamic programming 2
E. The purpose of this paper 2

II. Preliminaries 2
A. k-outerplanar graphs 2

III. An approximation algorithm for planar graphs 2

IV. An exact algorithm for outerplanar graphs 3
A. Constructing the tree G representing G 3
B. Labelling G to represent a walk around G 4
C. The dynamic program computing the

optimal solution 4
D. Conclusion and adaptability 5

V. On the notion of slices 5
A. The basic idea 5
B. Constructing trees for k-outerplanar

graphs 6
C. The formal definition 6

1. A first approach 6
2. Computing slices across levels 7
3. The final definition 8

D. An overview of the dynamic program 8

VI. Adapting the algorithm to solve other
problems 8
A. Minimum Vertex Cover 9
B. Minimum Edge Dominating Set 9
C. Three-Coloring 9

VII. Conclusion 9
A. Summary 9
B. Evaluation 10

VIII. REFERENCES 10

I. INTRODUCTION

Graphs are one of the most useful tools to formalise
real-world problems. A relatively small number of
NP-complete problems on graphs can offer solutions

for a vast amount of use cases, which makes studying
these problems so important. However, the complexity
of NP-complete problems is unknown. All current
approaches lead to exponential runtime, which is often
impractical, but there is no proof that polynomial
runtime cannot be achieved. There are many tricks to
deal with this problem, each with their own advantages
and disadvantages. In this paper, we will focus on four
of the most common ways to do so.

A. Planar graphs

The first strategy we will consider is limiting the struc-
ture the problem is to be solved on to a subclass of graphs
to derive an algorithm only working on that subclass but
with better running time. Probably the most common
and well-known subclass of graphs are planar graphs,
which often contain sufficient structures to properly rep-
resent real-world problems. This paper aims to take a
closer look at how to solve multiple NP-complete prob-
lems on planar graphs.

B. Approximation algorithms

Another way of evading the complexity of a problem
is to approximate the optimal solution. Some problems
are completely unsuitable for this strategy, but for many
other problems algorithms with a polynomial runtime
and a bound on the approximation ratio can be found. A
polynomial time approximation scheme (PTAS) is an al-
gorithm which takes the usual input for an NP-complete
problem and an additional parameter ε > 0 and com-
putes a solution with an approximation ratio of at least
(1− ε), or at most (1 + ε) for minimization problems, in
polynomial running time for fixed ε. A PTAS is a pow-
erful tool, as it can adapt depending on the importance
of a good approximation ratio and complexity.

C. Fixed parameter tractability

Another topic we want to take a look at is fixed pa-
rameter tractability. A problem is considered fixed pa-
rameter tractable if an algorithm exists which solves the
problem in running time f(k) · nO(1) where k is an ad-
ditional parameter depending on the input, n the size of

2

the input, in this case the number of nodes, and f an
arbitrary function depending only on k. This allows for
a deeper analysis of an NP-hard problem by looking at
what makes it so hard, and then refining the complexity
to allow good running times for instances with a low k.
This is especially useful on graphs, as many problems are
often easily solved on simple graphs such as forests, and
only get hard as the graph becomes more complex. We
want to use k-outerplanarity as a way to evaluate the
complexity of a graph.

D. Dynamic programming

Dynamic programming is a popular programming
paradigm to solve problems that can be divided into sub-
problems. Mainly, the input is recursively decomposed
into smaller instances, until a size is reached such that
the solution is obvious. Using some relatively easy for-
mula, the solutions for smaller instances are then, back-
tracking the recursion, merged to give solutions for their
parent instances until the solution for the main instance
has been computed.

E. The purpose of this paper

This paper presents a technique using the principles
above to solve various NP-complete problems on planar
graphs. It is based on the paper ’Approximation Al-
gorithms for NP-Complete Problems on Planar Graphs’
by Brenda S. Baker [Baker, 1994] and aims to explain
its findings to make it accessible to a wider readership.
When parts of the paper are quoted with only minimal
or no changes, this is explicitly marked. For purposes of
discussion, we will focus on the Maximum Independent
Set problem, but we will give an overview how to adapt
the technique to other problems in the appendix. Our
first focus lies on a simple dynamic program which only
works on outerplanar graphs, a relatively simple subclass
of planar graphs with nice algorithmic properties. This
is followed by an overview how to generalise this algo-
rithm to all planar graphs. To not go beyond the scope
of this paper, we will omit most technical details of the
algorithm itself and instead focus on its main innova-
tion, which is the decomposition of a planar graph into
slices. These slices will then function as a way to decom-
pose the graph so dynamic programming can be applied.
Their size will also depend on the k-outerplanarity of a
given graph and the technique therefore uses the princi-
ple of fixed parameter tractability. This will give us an
algorithm to solve k-outerplanar graphs exactly with a
running time linear in the number of nodes n, but ex-
ponential in k. This algorithm is then incorporated into
a polynomial time approximation scheme, solving Maxi-
mum Independent Set with approximation ratio k/k + 1
in time O(8kkn) where n is the number of nodes and k a
freely chosen postive integer.

II. PRELIMINARIES

As mentioned before, we will focus on the Maximum
Independent Set problem:
Given an undirected Graph G = (V,E) and a positive
integer i, does G contain an independent set of size at
least i, that is, a subset V ′ ⊆ V with size at least i such
that no two vertices in V ′ are joined by an edge in E
[Baker, 1994]?

For now, we need just one additional term, which is
k-outerplanarity.

A. k-outerplanar graphs

Given a planar embedding E of a planar graph G, we
define k-level nodes according to the faces of the embed-
ding. Every node on the exterior face is called an exterior
or level 1 node. Exterior edges are defined analogously.
The technical definition of level i nodes, i > 1, is as fol-
lows: A cycle of level i nodes that is an interior face in
the subgraph induced by all level i nodes is called a level
i face. Consider the graph Gf induced by all nodes inside
a level i face. The nodes on the exterior edge of Gf are
then called level i+ 1 nodes.
This definition becomes more accessible when looking at
an algorithm to compute the level of all nodes. In each
step, starting at 1, remove all nodes on the exterior face.
Repeat until there are no nodes left. The level of a node
is the step in which it was removed. Using an appropri-
ate data structure for the planar embedding, such as the
one used by Lipton and Tarjan [Lipton and Tarjan,
1979], this can be done in linear time.
A planar embedding is called k-outerplanar if there are
no nodes of level > k, which means the algorithm ter-
minates after at most k steps. A planar graph is called
k-outerplanar if it has a k-outerplanar embedding. If a
graph is 1-outerplanar, we will simply call it outerplanar.
The subclass of outerplanar graphs will be of importance
to us, as it has some properties which make it easy to
develop algorithms solving various problems on this sub-
class. See Figure 1 for a 3-outerplanar graph. The nodes
A to G are of level 1, the nodes a to g are of level 2
and the nodes 1 to 8 are of level 3. Notice that although
the nodes 1 to 5 and 6 to 8 are not enclosed by the same
face and therefore not connected, they’re still of the same
level.

III. AN APPROXIMATION ALGORITHM FOR
PLANAR GRAPHS

We will use this new notion of k-outerplanarity to con-
struct a polynomial time approximation scheme for max-
imum independent set on planar graphs, which can be
easily adapted to other NP-complete problems. The goal
is an algorithm that, for a freely chosen but fixed k, solves

3

A B

C

D

E

F

G

a b

c

de

f

g

1 2

3

4

5

6
7

8

Figure 1. A planar embedding of a 3-outerplanar graph
[Baker, 1994].

maximum independent set with an approximation ratio
of k/k + 1 and a linear complexity with respect to the
number of nodes n.
Basically, we want to exactly solve maximum indepen-
dent on disjunct subgraphs that are k-outerplanar and
ignore some nodes in the graph to merge the subgraphs
without violating the conditions of the maximum inde-
pendent set. The first part of this sentence is formalised
in this theorem, which we will prove later:

Theorem 1 [Baker, 1994] Let k be a positive inte-
ger. Given a k-outerplanar embedding of a k-outerplanar
graph G, an optimal solution for maximum independent
set can be obtained in time O(8kn), where n is the num-
ber of nodes.

Given a positive integer k and a planar graph G, the
algorithm works as follows:

1. Generate a planar embedding of G using the linear-
time algorithm of Hopcroft and Tarjan [Hopcroft
and Tarjan, 1974] and compute the level of every
node.

2. For each i, 0 ≤ i ≤ k, do the following:

(a) Remove all nodes where the nodes level
mod (k + 1) equals i, splitting the graph into
components with an (already computed) k-
outerplanar embedding.

(b) Use Theorem 1 to exactly solve maximum in-
dependent set on all those components and
take the union of the solutions. This is pos-
sible as the components are disjunct and no
edges can exist between two components.

3. Take the best solution for all i as the solution for
the entire graph.

To see that this gives a solution with approximation ratio
k/k+ 1, consider the optimal solution SOPT . For some i
as defined above, at most 1/k + 1 of the nodes in SOPT

are at a level congruent to i. As the other components
are solved exactly, the union of their solutions has at least
the size of SOPT minus those at most 1/k + 1 · |SOPT |
nodes, leading to the desired approximation ratio. This
leads to the second theorem:

Theorem 2 [Baker, 1994] For fixed k, there is an
O(8kkn)-time algorithm for maximum independent set
that achieves a solution of size at least k/k+1 optimal for
general planar graphs. Choosing k = dc log log ne, where
c is a constant, yields an approximation algorithm that
runs in time O(n(log n)3c log log n) and achieves a solu-
tion of size at least dc log log ne/(1+dc log log ne) optimal.
In each case, n is the number of nodes in the graph.

Theorem 2 formalises exactly what this paper aims to
prove. To prove it correct, we need to prove Theorem 1.

IV. AN EXACT ALGORITHM FOR
OUTERPLANAR GRAPHS

First, we will just consider the special case of outerpla-
nar graphs. Although these are relatively easy to solve,
the procedure to solve k-outerplanar graphs is quite sim-
ilar. For that reason, we will analyse this algorithm quite
in depth while keeping in mind how to adapt any step to
solve k-outerplanar graphs.
The algorithm is based on the principle of dynamic pro-
gramming. By recursively merging solutions for sub-
graphs of G, we construct an optimal solution for the
whole graph. To keep complexity low, we need to put
some effort into the choice of subgraphs, so that each
merger takes constant time.

A. Constructing the tree G representing G

To understand how we need to choose the subgraphs,
we first have to find an easy way to merge optimal so-
lutions for two graphs. Notice that an optimal solution
for the subgraph is not necessarily subset of an optimal
solution for the merged subgraph or the entire graph.
This is because nodes of the subgraph adjacent to nodes
outside the subgraph are additionally restrained. For
each such node we need to consider both cases, the node
is part of the solution or it is not. The number of cases
is exponential to the number of such nodes, so we want
to keep those at a low constant. Those nodes are called
boundary nodes, as their assignment clearly induces the
optimal assignment of all other nodes of the subgraph.
There is a relatively easy decomposition of any out-
erplanar graph G such that every subgraph has two
boundary nodes. One way to see this is noticing that any
connected outerplanar graph (with at least four nodes)
can be divided into two components by removing two

4

5

4 3

2

1

6 7

8

9

11

10

Figure 2. A tree for an outerplanar graph [Baker, 1994].

nodes. It is based on the idea of going a counterclockwise
walk around the exterior edges of G and then taking
shortcuts. The decomposition can be visualized by a
tree G, which we will now construct.

1. Remove each bridge, that is, an edge whose removal
disconnects the graph, by adding a second edge be-
tween the same nodes, making it a face.

2. Construct a graph vertex for every interior face and
every exterior edge.

3. Draw edges between every edge vertex and the ver-
tex of the face the edge is contained in, and between
every two vertices of faces that share an edge.

4. There might be nodes that need special attention,
whose removal disconnects the graph. Call those
nodes cutpoints. As we removed bridges, a cutpoint
is a node where at least two faces meet without
sharing an edge, therefore disconnecting the tree for
G. Draw an edge between two vertices of faces that
both contain the cutpoint and are part of different
components until G is connected.

See Figure 2 for an example of a graph and its tree. Note
that node 9 is a cutpoint. The connection to the face
vertex for the triangle 7 − 8 − 9 was chosen arbitrarily;
the square 1− 3− 7− 9 would have proven equally fit.

B. Labelling G to represent a walk around G

For now, we have constructed a tree representing the
structure of G. In order to extract an ordering of sub-
graphs and merges, we need to give this tree an ordering
by choosing a root and therefore give direction to the
tree. As the optimal solutions for edges are basically

(1,1)

(1,3)

(1,2) (2,3)

(3,7)

(3,4) (4,6)

(4,5) (5,6)

(6,7)

(7,9)

(7,8) (8,9) (9,9)

(9,10) (10,11) (11,9)

(9,1)

Figure 3. The tree from Figure 2 ordered and labelled [Baker,

1994].

given by definition and any edge can trivially be bound
by two nodes as it only contains those two, it makes sense
to choose all edge vertices as the leaves of G. Choose any
face vertex to be the root of the tree, any adjacent vertex
to be the first child. The ordering of any face vertices’
children is now unambigously induced by a counterclock-
wise walk on the edges of the face.
To better understand how this tree induces an order-
ing of subgraphs, we label the vertices. Each label is a
two-tuple of two not necessarily different nodes from G,
which are the boundaries of the subgraph represented by
the vertex. This subgraph consists of all nodes on a coun-
terclockwise walk from the first to the second boundary
node, where the first boundary node is the first of the
two nodes to appear in a counterclockwise walk from the
right node. The leaves of the subtree of any vertex are
exactly the edges on this walk. The inner vertices repre-
sent the inner edges (or cutpoints) that act as shortcuts
on this walk. Every time a solution is merged, such a
shortcut is taken, symbolizing that all nodes that are not
part of the walk anymore have been dealt with.
First, label each edge vertex with the two endpoints of
the edge. Then label each face vertex with the left label
of its first and the right label of its last child.
See Figure 3 for the labeled tree of the graph G, where
the face vertex for the square 1− 3− 7− 9 was chosen as
the root, and the face vertex for the triangle 1− 2− 3 as
the first child, which means the walk starts at the node
1. The vertex (9, 9) represents the cutpoint at node 9.

C. The dynamic program computing the optimal
solution

The approach of computing the optimal solution is
now clearly given by the tree G, so we will now focus on
the technical details. We will use dynamic programming
on the tree to construct a table with four entries for
every tree vertex. We need four entries as we need to
encode all combinations for the two boundary nodes
whether they are in the maximum independent set or
not. Those will be adressed by two bits for the two
boundary nodes. Note that at least one entry will
always be undefined, as the two boundary nodes will
always be either adjacent, so that it is impossible for

5

both to be in the set, or the same node, so that it is
impossible for just one of them to be in the set. The
other entries will contain the size of the optimal solution
for this assignment of the boundary nodes in the current
subgraph. In particular, the two defined entries on the
root, which is always labelled (x, x), contain the sizes
of optimal solutions for the entire graph depending on
whether x ist part of the set.

table(v)
if v is a level 1 leaf with label (x,y)
return a table representing (x,y)

else T=table(u), where u is the leftmost
child of v

for each other child c of v from left to
right
T= merge(T,table(c))

return adjust(T)

Again, we start by computing tables for the edges, as
these are the base cases of our recursion. The entries for
any edge will be 0 − 1 − 1 − undefined. Similar to a
post-order traversal, the values for all face vertices will
then be computed by backtracking the recursion. The
tables of all children are merged to form the new table
for the parent vertex, whose boundaries are, as per defi-
nition of its label, the left boundary of the first and the
right boundary of the last child. It also holds that the
right boundary of a child is equal to the left boundary
of its successor (if it exists) so we can always perform a
merge.
The procedure merge itself works as follows: For two al-
ready computed tables T1 and T2 of solutions bound by
(x, y) and (y, z), therefore sharing a boundary, construct
a table for (x, z) by computing a value for every combi-
nation of assignments of x and z. To do so, take the max-
imum over T1(x, 0) + T2(0, z) (the new solution does not
use y) and T1(x, 1) + T2(1, z)− 1 (the new solution does
use y). Note that you need to subtract 1 in the second
formula to avoid counting y twice, as it is part of both
solutions. This can be generalised to taking the maxi-
mum over all possible assignments of y, which currently
are only 0 and 1, of the formula T1(x, y) + T2(y, z)− |y|1
to generate the entry T (x, z) for some boundaries x, z.
|y|1 encodes the number of ones in y, which again are
currently only 0 and 1.
When this has been done for all children, we have com-
puted a table for the boundary of the parent vertex. As
the two boundary nodes of the parent vertex must be ad-
jacent or the same node, we need the procedure adjust.
It takes care of setting some entries to undefined due to
the solution being incorrect otherwise. Calling table on
the root of G results in a table with entries for (0, 0) and
(1, 1), and the larger of these values is the size of the
maximum independent set of G. By backtracking the
decisions made during each merge, the solution itself can
be found easily.

D. Conclusion and adaptability

Let us summarize the algorithm we constructed so far:
Using dynamic programming, we recursively computed
solutions for growing subgraphs until we achieved the so-
lution for the entire graph. To do so, we defined the tree
G to an outerplanar graph G, which gives the exact order
of merge operations. Then we computed tables for every
vertex of the tree starting at the leaves, which simply
encoded some edges.
We found that it is possible to bind any subgraph using
just two boundary nodes when it comes to outerplanar
graphs. This is the only prerequisite for our algorithm
that does not hold for k-outerplanar graphs, which means
we need to change our choice of subgraphs. Changing the
subgraphs will of course also lead to changes in the tech-
nical details of the dynamic programming. However, the
main idea will stay the same, so we will not go into its
details. Instead, we want to focus on the main difference,
the subgraphs and their boundaries. Until now, the sub-
graphs simply consisted of edges, faces, or unions over
faces such that there was only one face adjacent to some
other face that was not part of the subgraph. Now, this
needs to become more involved, which is why we will look
at the concept of slices.

V. ON THE NOTION OF SLICES

A. The basic idea

Let us take a look at the properties of k-outerplanar
graphs that might come in useful when defining a new
type of subgraph. For one, they are planar, so choosing
a path between two exterior nodes as a boundary will al-
ways split the graph in two. Of course, to keep complex-
ity low, we want to choose two nodes so that the length
of the path between them is as short as possible, at best
somewhat bounded. That is essentially what we did with
outerplanar graphs, but finding exterior nodes with short
paths between them was really easy. Now we must make
do with the looser restriction of a k-outerplanar graph.
Consider some node of level i. Although a path from
this node to an exterior node may be arbitrarily long,
we can always find i − 1 nodes, one of every level from
1 to i such that a path using exactly those nodes would
not hurt the planarity constraint. This requires addi-
tional edges, which will be used in the construction of
the slices, but not in the computation of the optimal so-
lution. By combining the paths of two nodes of level i
that share an edge or are the same, we get a boundary
of 2i nodes, where the left boundary consists of the path
from some exterior edge to the first node and the right
boundary consists of the path from some exterior node
to the second node. This means we will now think of
boundaries as two vectors of nodes rather than just two
nodes.
To better understand this idea, consider this analogy:

6

Think of the entire graph as a pie, and you want to cut
out a slice of some size. What you would do is make
a first cut pointing to the middle and not longer than
the pie’s radius. Then you’d make a second cut ending
exactly where your first cut ended and again not longer
than the pie’s radius, leading to a slice. This is exactly
what we are doing here, with the left boundary represent-
ing your first and the right boundary representing your
second cut.

B. Constructing trees for k-outerplanar graphs

We will again make use of our concept of trees de-
scribing the structure of the original graph. Each level i
component seperated is outerplanar, so we use the same
strategy to construct a tree representing a counterclock-
wise walk around the exterior edges of the component.
This of course generates a seperate tree for each compo-
nent, which will not be linked, but constructed depending
on the trees for the enclosing component. The construc-
tion of the slices will then make sure that the subgraphs
are correctly merged.
The only difference is the choice of the root and leftmost
child for the trees of the level i components, which de-
pends on the root of the enclosing component. Consider
a level i component C enclosed by a level i − 1 face f
labelled (x, y). Note that the labels are still chosen in re-
spect to the walk on the exterior edges of the component
and therefore still consist of two nodes, not two vectors
of nodes like the boundaries, although we use (x, y) for
both. By scanning their nodes in parallel, construct a tri-
angulation between those two in linear time. See Figure
4 for such a triangulation. The root (z, z) for C is chosen
depending on (x, y). If x = y, then z is any node adjacent
to x, otherwise it is the node adjacent to both x and y
in the triangulation. The leftmost child is then the first
edge counterclockwise from (z, x), which unambiguosly
defines the rest of the tree as done before.

C. The formal definition

1. A first approach

Let us go into the technical details of slices. For every
vertex of every level i tree we constructed as in the sub-
section above, we want to build a slice with two boundary
vectors containing i boundary nodes each. Note that the
slice can include nodes of higher level, but as they will
be surrounded by some face in our slice, we do not need
seperate boundary nodes for these. In particular, every
slice for a face will always contain all nodes enclosed by
the face, and the slices for these are computed by recurs-
ing on the root of the tree of the enclosed component.
Slices will be defined recursively. Again, we will follow
the order given by the trees in the construction. The
recursion starts at the root of the level 1 component, as

a b

c

de

1 2

3

4

5

6 7

8

Figure 4. Triangulating regions between levels 2 and 3 for
the graph of Figure 1. Edges added in the triangulation are
shown as dashed lines [Baker, 1994].

the dynamic program will also start there, and ends only
at the level 1 leaves. As noted before, the transition to a
higher level will be taken care of by the slices for vertices
of enclosing faces. However, as the recursion does only
end on the level 1 leaves, we also need a way to get back
from higher to lower levels. This does also make sense
considering that we want the boundaries to run from level
1 to i, so we do always need nodes from all the lower lev-
els in every slice. Considering this keyword

’
always‘, it

makes sense to integrate this connection into the leafs,
as their slices will be part of the nodes for inner slices.
These thoughts lead to the following informal definition:
Let v be a tree vertex labeled (x, y). Remember that
tree vertices are not labeled with vectors, but two single
nodes.

1. If v represents a level i face with no enclosed nodes,
i ≥ 1, its slice is the union of the slices of its chil-
dren, plus (x, y).

2. If v represents a level i face enclosing a level i + 1
component C, its slice is that of the root of the tree
for C plus (x, y). (However, as noted above, the
boundaries only run from level i to level 1 instead
of from level i+ 1 to 1.)

3. If v represents a level 1 edge, its slice is the sub-
graph consisting of (x, y).

4. if v represents a level i edge, i > 1, then its slice
includes (x, y), edges from x and y to level i − 1
nodes, and the slices computed recursively for ap-
propriate level i − 1 trees. Here,

’
appropriate‘ is

determined by slice boundaries placed along edges
in a triangulation of the region between level i− 1
and i [Baker, 1994].

Points 1 and 3 are pretty intuitive and would already be
enough to derive the strategy for outerplanar graphs, so

7

we will look at the peculiar points 2 and 4. The second
point states that the slice for a face enclosing some
component includes the slice of said component, which
is, considering our forethoughts, no surprise. However,
it does not include the slices of the children of the tree
vertex. Instead, the slices for the leaves of the tree of
the enclosed take care of these, and we will have to take
a closer look at which leaves take care of which children.
This is done so the slices always contain nodes from all
levels up to the level of the slice, as we mentioned before.
So how exactly do we assign the which leaves contain
the slices of which children? It all depends on the
boundaries implied by the assignment. We want to
choose the boundaries in a way so that leaves can easily
be merged, so the right boundary of a leaf should be
equal to the left boundary of the next one. Also, all
children must be considered and there may be no edges
crossing slice boundaries.

2. Computing slices across levels

We can assume by induction that using the left bound-
ary of some level i− 1 vertex and the right boundary of
some other level i vertex, which is to the right of the first
vertex considering the tree from the level i component or
simply the same vertex, yields a correct boundary if the
hole between their boundaries is properly filled. There-
fore, we will produce a function assigning two level i− 1
vertices to each level i vertex which fills said hole in the
boundary. The triangulation used for defining the trees
will be recycled here, as it gives us an idea which pairs
of nodes would be suitable partners in a boundary.
For this function, we first need to define dividing points.
Let C be a level i component enclosed by a level i−1 face
f whose tree vertex is labeled (x, y). Let TRI(C, f) be
the triangulation of the region between C and f already
constructed in defining the trees. For any pair of suc-
cessive edges (x1, x2), (x2, x3) in a counterclockwise walk
around the exterior edges of C, there is at least one node
y of f that is adjacent to x2 in TRI(C, f) such that the
edges (x2, x1), (x2, y), (x2, x3) occur in counterclockwise
order around x2. Call such a node a dividing point for
(x1, x2) and (x2, x3)) [Baker, 1994].
Basically, every node of the face adjacent to x2 is a divid-
ing point for the two exterior edges including x2, except
when there is a cutpoint. A cutpoint has more than two
exterior edges, so we can’t simply assign nodes to their
dividing points for the boundary and need the more com-
plicated definition above. Again, see Figure 4 for exam-
ples of dividing points. a and b are dividing points for
the edges (1, 2) and (2, 3). e is a cutpoint for the edges
(5, 3) and (3, 1), but b is not as 3 is a cutpoint.
We will now define the functions assigning boundaries to
all level i vertices, which we will call LB and RB. These
functions will map the vertices of C on the numbers 1
to r where r is the number of children of the tree vertex

corresponding to f . The definition is as follows:

1. Let the leaves of C be v1, v2, ..., vt from left to right,
and let vj have label (xj , xj+1), for 1 ≤ j ≤ t. Let
the children of vertex(f) be z1, z2, ..., zr from left
to right, where zj has labeled (yj , yj+1) for 1 ≤
j ≤ r. Define LB(v1) = 1 and RB(vt) = r + 1.
For 1 < j ≤ t, define LB(vj) = q if q is the least
p ≥ LB(vj−1) for which yp is a dividing point for
(xj−1, xj) and xj , xj+1). For 1 ≤ j < t, define
RB(vj) = LB(vj+1).

2. If v is a face vertex of C, with leftmost child cL
and rightmost child cR, define LB(v) = LB(cL)
and RB(v) = RB(cR) [Baker, 1994].

Remember that we want to do a counterclockwise walk
around the edges of f , but right now we do not want
to consider the edge corresponding to the faces label as
its slice has already been taken care of, so we make sure
to start exactly to the right of it and end exactly to the
left by setting the values for LB(v1) and RB(vt) accord-
ingly. To each leaf, a value is assigned which represents
the leftmost dividing point, with the additional condi-
tion that the value is not lower than the value of the
left neighbour leaf, which is needed to ensure that the
boundaries do not include the face represented by the
parent vertex. Finally, for all nodes except the last, RB
is simply set to be equal to the successors LB so that
the boundaries match and we can later perform merges
in the dynamic programming. This definition achieves
two key points. First, the values of LB and RB are non-
decreasing for sibling vertices from left to right, which
makes sure that the assignment will not build slices with
edges crossing the boundary. Second, for each vertex v,
it holds that LB(v) ≤ RB(b) so that the boundaries for
a single vertex are correct. The exact translation for a
vertex v labeled (x, y) from values for LB and RB to the
boundaries works as follows:

1. If v is a level 1 leaf, the left boundary of slice(v) is
x and the right boundary is y.

2. Suppose v is a vertex of a tree for a level i compo-
nent enclosed by the level i − 1 face f . Let s be
the number of children of vertex(f). In the follow-
ing, define the right boundary of the 0th child of
vertex(f) to be same as the left boundary of the
first child of vertex(f), and the left boundary of the
(s+1)th child to be the same as the right boundary
of the sth child. If LB(v) = q, the left boundary of
slice(v) is x plus the left boundary of the slice of
the qth child of vertex(f). If RB(v) = t, the right
boundary of slice(v) is y plus the right boundary of
the slice of the t − 1th child of vertex(f) [Baker,
1994].

8

3. The final definition

This gives us the formal definition of slices:
Let v be a level i vertex, i ≥ 1, with label (x, y). Again,
if a vertex u has s children, define the left boundary of
the (s+ 1)th child to be the same as the right boundary
of the sth child.

1. If v is a face vertex, and face(v) encloses no level
i+ 1 nodes, then slice(v) is the union of the slices
of the children of v, together with (x, y) if (x, y) is
an edge (i.e., x 6= y).

2. If v is a face vertex and face(v) encloses a level i+1
component, then slice(v) is the subgraph contain-
ing slice(root(C)) plus (x, y) if (x, y) is an edge.

3. If v is a level 1 leaf, then slice(v) is the subgraph
consisting of (x, y).

4. Suppose v is a level i leaf, i > 1. Suppose the
enclosing face is f , and vertex(f) has children
uj , 1 ≤ j ≤ t, where uj has label (zj , zj+1). If
LB(v) 6= RB(v), then slice(v) is the subgraph con-
taining (x, y), any edges from x or y to zj , for
LB(v) ≤ j ≤ RB(v), and slice(uj), for LB(v) ≤
j ≤ RB(v). If LB(v) = RB(v) = r, then slice(v)
is the subgraph containing (x, y), any edges from x
or y to zr, the left boundary of slice(ur), and any
edges between boundary nodes of successive levels
[Baker, 1994].

This definition encorporates all of our thoughts collected
before. See Figure 5 for the slices of the level 3 vertices
(6, 7), (7, 8), (8, 6) in Figure 1. As you can see, the bound-
aries align so that the slices can be merged easily. For
example, the slice of the vertex labelled (b, d), which rep-
resents the face enclosing the level 3 component, can now
easily be computed by merging on the right boundary of
(6, 7), which is 7, b, A and equal to the left boundary of
(7, 8), and merging the resulting slice with the slice for
(8, 6), then finally adding the edge (b, d).

D. An overview of the dynamic program

With slices now fully defined, we can start adapting
the rest of the algorithm, which mainly breaks down to
the dynamic program. Again, we want to compute tables
for subgraphs, in this case, smaller slices, and then merge
the solutions. The tables will contain the size of the op-
timal solution for the given assignment of the boundary
nodes. As a slice is being constructed according to the
definition above, its table will be computed at the same
time. This means the order of merges is clearly given by
the construction rules of slices.
The dynamic program also uses other subroutines, for ex-
ample a modified adjust, to deal with single edges being
incorporated into the graph or changing the boundaries
to the right size so merges can be performed, but is still

A B

b

c7

8

A

b

6
7

B

C

c

d

6

8

Figure 5. Three slices for the graph of Figure 1. Missing edges
between boundary nodes are shown as dashed lines [Baker,

1994].

based on the merge routine. For that reason, we will now
take a deeper look at merge.
As before, merge merges two tables T1 and T2 for two
subgraphs, now level i slices S1 and S2, which share a
boundary y. Let the boundary of S1 be (x, y) and the
boundary of S2 be (y, z). The resulting table corresponds
to a slice with boundary (x, z). We can again use the for-
mula T1(x, y)+T2(y, z)−|y|1 used for outerplanar graphs.
For every combination of x and z, the maximum over all
assignments of y must be computed. Remember that x,y
and z are vectors containing i nodes, so that there are 2i

possible assignments for each of them. Again, the num-
ber of nodes that are part of the optimal solution and
the merged boundary y must be subtracted to avoid be-
ing counted twice.
This operation also dominates the running time of the
algorithm. A table for each combination of x and z must
be computed, which leads to 2i · 2i tables. Each compu-
tation must consider 2i possible assignments of y. For a
k-outerplanar graph, i is bounded from above by k as i
is the level of the considered vertex. A merge is called
at most once for every face vertex, as its face or edge
is then incorporated into the already solved part of the
graph and does not need to be incorporated again. The
number of vertices is linear in the number of edges, which
is, in planar graphs, linear in the number of nodes. This
leads to a total running time of O(2k ·2k ·2k ·n) = O(8kn).

VI. ADAPTING THE ALGORITHM TO SOLVE
OTHER PROBLEMS

This section focuses on how to adapt the final algo-
rithm to solve other NP-complete problems exactly. We
will focus on three well-known problems, namely Mini-
mum Vertex Cover, Minimum Edge Dominating Set, and
Three-Coloring. However, a number of additional prob-
lems can also be solved using this technique, but we will

9

only consider those mentioned above as they are suffi-
cient to give an idea how to adapt the algorithm. When
applicable, we will also show how to adapt the approxi-
mation algorithm.
Generally speaking, the same decomposition into slices
can be used for exactly solving every of these problems,
which makes this technique quite powerful as it is eas-
ily adaptable. The only difference lies in the tables used
in the dynamic programming. For Maximum Indepen-
dent Set, the highest possible number of nodes was com-
puted for a slice, which now has to change. This also
implies that the merge operation needs a slight adap-
tation aswell, but it will still work on slices sharing a
boundary and compute new solutions for every combi-
nation of boundaries. The boundary nodes will stay the
same, however their interpretation might also need modi-
fication. Before, we encoded if a boundary node was part
of the Maximum Independent Set, which does not work
when considering a problem which is not based on nodes
or uses more than two possible assignments to a node.

A. Minimum Vertex Cover

We will start with Minimum Vertex Cover, as it is a
very similar problem:
Given a graph G = (V,E) and a positive integer K ≤ |V |,
is there a vertex cover of size K or less for G, that is, a
subset V ′ ⊆ V with |V ′| ≤ K such that for each edge
(u, v) ∈ E at least one of u and v belongs to V ′ [Garey
and Johnson, 1979]? We only need to change the de-
tails in the bookkeeping. Each table entry contains the
size of the Minimum Vertex Cover for the given slice, and
the boundary nodes are assigned whether or not they are
part of the Minimum Vertex Cover. The merge operation
must also be adapted to compute a minimal instead of
a maximal value. The approximation works a bit differ-
ently. The graph is again split into subgraphs of a chosen
outerplanarity, but this time the edge levels are consid-
ered twice instead of being left out. Formally, this works
as follows. For each i, 0 ≤ i < k, do the following:
Take the graph of all nodes of level jk+ i to (j + 1)k+ i
and compute the optimal solution for all j ≥ 0, then take
the union of these solutions as the final solution.
For at least one i this gives a solution with an approxi-
mation ratio of at most (k+1)/k. The reasoning is again
similar to Maximum Independent Set. For some i, all
levels congruent to i will contain at most |S|/k nodes of
an optimal solution S. The instance using these levels as
edge levels counts at most|S|/k nodes twice and solves
the rest of the graph optimally, leading to the desired
approximation ratio.

B. Minimum Edge Dominating Set

A problem which also changes the assignments to the
boundaries, but is otherwise quite similar especially to

Minimum Vertex Cover is Minimum Edge Dominating
Set:
Given a graph G = (V,E) and a positive integer K ≤ |V |,
is there a set E′ ⊆ E of K or fewer edges such that every
edge in E shares at least one endpoint with some edge
in E′ [Garey and Johnson, 1979]? This problem now
focuses on minimising a number of edges, so the tables
will encode the size of the Minimum Edge Dominating
Set for the corresponding slice, subject to which bound-
ary nodes are endpoints of edges in that set. The sub-
routines also need to be slighty adapted to cover edges
instead of nodes.
The approximation algorithm works similar to the algo-
rithm for Minimum Vertex Cover, as the graph is split
into the same subgraphs.

C. Three-Coloring

Lastly, we will look at the Three-Coloring problem,
as it shows major differences to the other problems and
can’t be approximated:
Given a graph G = (V,E), is G 3-colorable, that is,
can the nodes be colored with three different colors such
that adjacent nodes are always assigned different col-
ors [Garey and Johnson, 1979]? Coloring a node with
three colors is an assignment with three different states
for each node, instead of the two possible assignments
(yes/no) we used before. So, for a boundary of size k,
all combinations of the three possible assignments must
be considered, which leads to 32k table entries. The ta-
ble entries encode whether, given the assignment of the
boundary nodes, the slice can be three-colored. A merger
then takes time O(33k).
Approximating this problem in the way we’ve done be-
fore is not possible, as we can’t just leave out nodes or
consider them twice. It also makes no sense to approxi-
mate the chromatic number, as planar graphs are always
four-colorable. Therefore we are not able to construct
a PTAS, but a way to solve Three-Coloring on planar
graphs with low k-outerplanarity is still found.

VII. CONCLUSION

A. Summary

We have taken a look at various NP-complete prob-
lems on graphs and described an algorithm solving them
exactly. By constructing trees describing the structure
of a k-outerplanar graph and building slices for the tree
vertices, we have found a decomposition of the graph
suitable for dynamic programming. Slices are used to
partition the graph. Their main feature is their bound-
ary, whose size is bounded by the level of the vertex the
slice belongs to. This greatly improves complexity, as
the decomposition is the most runtime consuming part
of the algorithm. By changing details in the dynamic

10

program, we are able to adapt the algorithm for different
NP-complete problems while using the same decomposi-
tion.
When the problems proved suitable for approximation,
we were also able to use the given algorithm in a polyno-
mial time approximation scheme splitting a given graph
into k-outerplanar graphs, solving these exactly and
merging the solutions with an error of only 1/k.

B. Evaluation

We again focus on Maximum Independent Set for pur-
poses of discussion. The algorithm by Brenda S. Baker
gives, for fixed k, an exact solution in linear time. In
general, a running time of O(8kn) is obtained. Note
that for graphs of outerplanarity k ∈ O(log(n)), this de-
fines a class of planar graphs for which Maximum In-
dependent Set is solvable in polynomial time. While
the complexity is quite impressive, the algorithm itself
is rather complicated, which is its major weakness. The
construction of a single slice can occur according to four
different types of tree vertices, and often involves other
slices. In particular, slices can depend on other slices
of the same level, one level above or one level below,
which leads to a recursion switching levels more than
2k times. Newer algorithms, for example such based on
treewidth, are much simpler, but still achieve the same
result [Bodlaender and Koster, 2008]. Treewidth is
quite closely related to k-outerplanarity, as both notions
characterize the structure of the graph. However, an al-
gorithm based on trees rather than conjoined cyles is pre-
destined to be more straightforward and have less edge
cases. The k-outerplanarity of a graph is also bound by
its treewidth [Bodlaender, 1998], again showing how
closely the two topics are related.
Another notable feature of Baker’s algorithm is its us-
ability in a polynomial time approximation scheme with
an approximation ratio of scheme to converge towards
optimal while not losing its polynomial complexity for
increasing n. As treewidth and k-outerplanarity are
related, the same approximation can also be used for
exact algorithms based on treewidth [Bodlaender and
Koster, 2008]. Finally it should be mentioned that
Baker’s algorithm can easily be adapted to deal with
other problems than Maximum Independent Set as seen
in Section VI.
Overall, Baker invented a very powerful algorithm of-
fering broad applicabilty, low running times and good
results, but also a quite complicated construction.

VIII. REFERENCES

BAKER, BRENDA S. 1994. Appoximation Algorithms
for NP-Complete Problems on Planar Graphs, J. ACM
41, January 1994, pp 153-180

LIPTON, R.J. AND TARJAN, R.E. 1979. A seperator
theorem for planar graphs, SLAM J. Appl. Math. 36, 2,
177-189.

HOPCROFT, J. AND TARJAN, R. 1974. Efficient
planarity testing, J. ACM 21, pp 549-568

GAREY, M.R. AND JOHNSON, D.S. 1979. Computers
and Intractability, A Guide To the Theory of NP-
Completeness, W.H. Freeman and Co., San Francisco,
Calif.

BODLAENDER, HANS L. AND KOSTER, ARIE M. C.
A. 2008. Combinatorial Optimization on Graphs of
Bounded Treewidth Comput. J. 51, May 2008, pp
255-269

BODLAENDER, HANS L. 1998. A partial k-arboretum
of graphs with bounded treewidth J. TCS 209, December
1998, pp 1-45

	Baker's approximation scheme for planar graphs
	Contents
	Introduction
	Planar graphs
	Approximation algorithms
	Fixed parameter tractability
	Dynamic programming
	The purpose of this paper

	Preliminaries
	k-outerplanar graphs

	An approximation algorithm for planar graphs
	An exact algorithm for outerplanar graphs
	Constructing the tree G representing G
	Labelling G to represent a walk around G
	The dynamic program computing the optimal solution
	Conclusion and adaptability

	On the notion of slices
	The basic idea
	Constructing trees for k-outerplanar graphs
	The formal definition
	A first approach
	Computing slices across levels
	The final definition

	An overview of the dynamic program

	Adapting the algorithm to solve other problems
	Minimum Vertex Cover
	Minimum Edge Dominating Set
	Three-Coloring

	Conclusion
	Summary
	Evaluation

	REFERENCES

