
Treewidth applications for Combinatorial Optimisation
Problems

Seminar: Algorithms on Sparse Graphs

Luca Oeljeklaus
luca.oeljeklaus@rwth-aachen.de

August 22, 2018

In this paper we will examine the applicability of the concept of treewidth in solving usually
NP-hard problems efficiently. We will specifically give an overview of algorithms capable of solving
the classical Maximum Independent Set Problem efficiently on specific graph classes.

Contents

1 Introduction 1

2 Introducing Treewidth 1
2.1 Tree decomposition 1
2.2 Treewidth 2
2.3 Treewidth approximation 2

3 MIS on Trees 2
3.1 Treewidth of trees 2
3.2 Algorithm 2

4 MIS on SP-graphs 3
4.1 Treewidth of SP-graphs 3
4.2 Defining SP-graphs 3
4.3 SP-trees 4
4.4 Algorithm 4

5 MIS on graphs of small treewidth 5
5.1 Nice tree decomposition 5
5.2 Algorithm 5
5.3 Complexity 6

6 A PTAS for MIS on planar graphs 7
6.1 Remarks and definitions 7
6.2 Algorithm 7
6.3 Proof of goodness 8

7 Conclusion 8

1 Introduction

In this paper, we provide an overview of the uses
of the notion of treewidth for solving combina-
torial optimisation problems. More precisely, we
will study algorithms that solve the Maximum
Independent Set Problem (MIS) efficiently when
provided with information about the treewidth of
a graph.

First, we will be introducing the notions of tree de-
composition and treewidth. Then we will proceed
by considering algorithms solving the MIS prob-
lem on trees, SP-graphs and graphs of bounded
treewidth, finishing with a polynomial-time ap-
proximation scheme for the MIS problem on pla-
nar graphs.

All introduced algorithms work on undirected
graphs, given by G = (V, E) with V a set of
vertices and E ⊆ (V × V) a set of edges. We
call a subgraph G′ of G induced by W ⊆ V if
G′ = (W, E ∩ (W ×W)).

2 Introducing Treewidth

2.1 Tree decomposition

The concept of tree decomposition has been sep-
arately introduced by Halin in 1976 [1] and by

1

Robertson and Seymour in 1984 [2]. Intuitively,
given an arbitrary graph, its tree decomposition
will determine which vertices must be merged to
obtain a tree. Such a tree decomposition is not
unique. Examples for a graph and a correspond-
ing tree decomposition can be found in Figure 1
and Figure 2.

Definition 1

Given a graph G = (V, E), a tree de-
composition of G is given by a pair(
{ Xi | i ∈ I } , T = (I, F)

)
where T is a tree

and each node1 i ∈ I is associated to a sub-
set of vertices (referred to as bags) Xi ⊆ V
such that:
• ⋃i∈I Xi = V.

Each vertex v ∈ V is contained by at
least one bag Xi.

• ∀(v, w) ∈ E, ∃ i ∈ I : v, w ∈ Xi.
For any edge, there is a bag Xi containing
both its endpoints.

• ∀ v ∈ V : { i ∈ I | v ∈ Xi } induces a
subtree of T.
All the nodes whose bags contain the same
vertex v ∈ V are connected and do not
form a cycle.

The width of a tree decomposition(
{ Xi | i ∈ I } , T = (I, F)

)
is given by

maxi∈I |Xi| − 1, the size of its biggest bag mi-
nus one.

2.2 Treewidth

From this definition of tree decomposition we can
derive the definition of treewidth.

Definition 2

Given a graph G = (V, E), its treewidth is
given by the minimum width over all its
tree decompositions.

Given all tree decompositions of a graph, the
treewidth is defined as the minimum width over
all of its decompositions. The −1 is used for aes-
thetic reasons as it lets trees have treewidth 1.

a b c

d e f

g

Figure 1: Graph Gα.

{ a, b, d } { b, c, e } { e, f } { b, g }

Figure 2: A tree decomposition for Gα.

2.3 Treewidth approximation

In general, the problem of determining if a graph
has a treewidth smaller than k for a given k is NP-
complete. However, it is possible to approximate
treewidth. The currently best known polynomial-
time approximation algorithm provides a

√
log k-

approximation [3].

Thus, discovering if a tree decomposition of width
k exists without knowing the treewidth is also NP-
complete. However, for constant k, it is possible to
find such a tree decomposition in linear time [4].
This means that the treewidth problem is in FPT.

3 MIS on Trees

3.1 Treewidth of trees

The class of trees is equal to the class of graphs
with treewidth 1. This is because the presence of a
cycle forces at least 3 nodes to be in the same bag,
therefore any graph with a cycle has a treewidth
of at least 2. Conversely, if a graph is a tree, there
always exists a tree decomposition such that each
node contains at most 2 vertices.

3.2 Algorithm

Determining the size of the MIS for trees can be
achieved in linear time using an algorithm de-
scribed by Bodlaender [5]. This is done by choos-

1We refer to vertices of tree decompositions as nodes.

2

ing an arbitrary vertex as a root and then recur-
sively computing two values A and B for each
vertex v:

• A: the size of the MIS of the subtree induced
by v including v.
• B: the size of the MIS of the subtree induced

by v excluding v.

These values are given for leaves as (A, B) = (1, 0)
as the subtree induced by a leaf is only the leaf
itself, so either it is itself contained in the indepen-
dent set or not.

For a non-leaf node v with children C =
{ c1 . . . cn }, the values are given by:

(A, B) =
(n

∑
i=1

ci(B),
n

∑
i=1

max
(

ci(A), ci(B)
))

.

That is, the A value is the sum of B values of the
children. This is due to the fact that if a vertex
v lies in the set, none of its direct children can,
as this would result in a violation of the indepen-
dence property. The B value on the other hand
allows for children to either be inside or outside
of the independent set.

A : 10
B : 11

5
4

4
4

1
0

1
3

1
0

1
0

5
5

3
4

3
2

1
2

1
0

1
0

1
0 1

0

1
0

1
0

Figure 3: MIS sizes computed
for all nodes of a tree.

An example of this algorithm can be seen in Figure
3. The final result of the algorithm is the maxi-
mum of the A and B values of the root. In Figure
3, the size of the MIS is thus given by B = 11.

4 MIS on SP-graphs

4.1 Treewidth of SP-graphs

The class of series-parallel graphs or SP-graphs is a
subset of the graphs of treewidth 2 [6].

4.2 Defining SP-graphs

SP-graphs are graphs that are defined by a tuple
(G = (V, E), s, t), with a graph G, a source s and
a sink t. Such a graph must be definable by re-
cursive application of two operations: serialisation
and parallelisation, the base case being two vertices
and an edge connecting them. An important re-
striction is that for an SP-graph, source and sink
are fixed and may not be changed. For example,
(Gβ, d, f) and (Gβ, f , d) are two different graphs,
and (Gβ, b, f) is not a valid SP-graph as it cannot
be constructed.

a b c

d e f

Figure 4: An SP-graph (Gβ, d, f).

Parallelisation Given two SP-Graphs (Gx, s1, t1)
and (Gy, s2, t2), they can be parallelised by iden-
tifying s1 and s2 as well as t1 and t2 (see Figure
5).

s1a

t1
+

s2

t2

→

an sn

tn

Figure 5: Parallelisation of two SP-Graphs.

Serialisation Given two SP-Graphs (Gx, s1, t1) and
(Gy, s2, t2), they can be serialised by identifying t1
and s2 into a single vertex (see Figure 6).

s1

t1
+

t2

s2
→

sn tn

xn

3

Figure 6: Serialisation of two SP-Graphs.

4.3 SP-trees

For such an SP-graph, it is possible to build an SP-
tree. In this tree structure, there are two types of
binary and one type of nullary vertices, all repre-
senting subgraphs of the original graph and each
labelled with the respective source and sink:

• P nodes correspond to the parallelisation of
their two children.
• S nodes correspond to the serialisation of

their two children.
• Leaves correspond to edges of the original

graph.

For example, the subgraph of Gβ induced by the
left subtree of the root of Figure 7 is the graph in-
duced by the vertices { d, a, b } as we first serialise
da and ab and then parallelise the result with db.

Such an SP-tree can be computed efficiently [7]
and is not unique.

S
d f

S
b f

P

db

P

be
e f

S
be

S
db

da ab

db

bc ce

be

Figure 7: An SP-tree for (Gβ, d, f).

4.4 Algorithm

On this SP-tree structure, we can now run a recur-
sive algorithm [5] similar to the one in section 3.2
to compute the MIS. However, instead of comput-
ing two values, we will be computing four values
for each vertex:

• AA: the size of the MIS containing both s
and t.
• AB: the size of the MIS containing s but not

t.

• BA: the size of the MIS not containing s but
t.

• BB: the size of the MIS containing neither s
nor t.

These values are trivial for leaves (i. e. edges
of the original graph), as they are given by
(AA, AB, BA, BB) = (−∞, 1, 1, 0). For S and P
nodes with children l and r, they are given by the
following rules (where l and r are the left and
right children respectively):

P node:

• AA = AA(l) + AA(r)− 2
• AB = AB(l) + AB(r)− 1
• BA = BA(l) + BA(r)− 1
• BB = BB(l) + BB(r)

S node:

• AA = max{AA(l) + AA(r)− 1, AB(l) + BA(r)}
• AB = max{AA(l) + AB(r)− 1, AB(l) + BB(r)}
• BA = max{BA(l) + AA(r)− 1, BB(l) + BA(r)}
• BB = max{BA(l) + AB(r)− 1, BB(l) + BB(r)}

For P nodes, we add the values of the children
and subtract 0, 1 or 2 to avoid double-counting the
source or the sink. For S nodes, the question we
ask is if we can keep the merged vertex without
breaking the independence property. The size of
the MIS is the maximum over the four values of
the root, i. e. 3 in Figure 8.

S
d f

S
b f

P

db

P

be
e f

S
be

S
db

da ab

db

bc ce

be

(3,2,3,2)

(2,1,2,1)

(-∞,1,1,1)

(-∞,1,1,1)

(2,1,1,1)

(2,1,1,1)

Figure 8: MIS calculations for (Gβ, d, f).

4

5 MIS on graphs of small treewidth

5.1 Nice tree decomposition

The algorithm we will be introducing is based on a
more restrictive version of the tree decomposition
called a nice tree decomposition.

Definition 3

A nice tree decomposition has all the proper-
ties of a tree decomposition. Additionally,
each node is of exactly one of the following
types:
• Leaf Node: i is a leaf of T and
|Xi| = 1.

• Join Node: i has two children j1 and
j2 and Xi = Xj1 = Xj2 .

• Forget Node: i has one child j and
∃v ∈ V s.t. Xi = Xj \ { v }.

• Introduce Node: i has one child j and
∃v ∈ V s.t. Xi = Xj ∪ { v }.

Given a non-nice tree decomposition of width k,
a nice one of the same width can be discovered in
linear time [8] using the following algorithm:

Algorithm 1

Input: A tree decomposition of width k.
Output: A nice tree decomposition of width
k.

1. Choose an arbitrary node as root.
2. If a node v1 has more than 2 children
{ c1, . . . , cn }:
a) Create copy v2 of v1.
b) Add v2 as a child of v1.
c) Set { c2, . . . , cn } as children of v2.
d) Repeat until reaching vn−1, which

will have children { cn−1, cn }.
3. For nodes v with 2 children { c1, c2 }:

a) Create copies of v: v1 and v2.
b) Set { v1, v2 } as children of v.
c) Set cx as child of vx.

4. For nodes with 1 child, create a series
of introduce and forget nodes between
them and their child.

5. For leaf nodes, create a series of intro-
duce nodes so that the leaf has size 1.

{ b, g } { b }

{ b, c }

{ b, c, e } { b, c, e }

{ b, e }

{ e }

{ e, f }

{ f }

{ b, c, e }

{ b, e }

{ b }

{ a, b }

{ d, a, b }

{ b, d } { d }

Join

Introduce (b)→

Forget (f)→

Leaf→

Root

← Node i

↑

↓

Figure 9: Nice tree decomposition of Gα.

In Figure 9 we can see the result that Algorithm 1
provides when given the tree decomposition from
Figure 2. The diagram also includes labelling
to simplify the understanding of the 4 types of
nodes.

5.2 Algorithm

For each node i with descendants { d1, . . . , dm },
we define the graph Gi = (Vi, Ei) such that
Vi =

⋃
y∈{ 1,...,m } Xdy and Ei = E ∩ (Vi ×Vi). That

is, Gi is the subgraph of G induced by all the
vertices contained by i and its descendents.

5

Further, we will compute a table Ci for each node
i. These tables will contain an entry for each sub-
set S ⊆ Xi. The rules for computing them will
be given first in Algorithm 2 and then further
explained below.

As an example, the table on the the next page
provides Ci for the node i from Figure 9.

Ci(∅) 0
Ci({ a }) 1
Ci({ b }) 1

Ci({ a, b }) −∞

Table 1: Ci for node i in Figure 9.

The entries Ci(S) represent the maximum sizes
of the independent set in Gi containing the ver-
tices in S. If some vertices in S do not fulfil the
independence criterion (meaning that they are
neighbours), the corresponding entry will be −∞.

Algorithm 2

Input: A nice tree decomposition(
{ Xi | i ∈ I } , T = (I, F)

)
of width k for

a graph G.
Output: The size of the MIS for G.

1. Compute a postorder (LRN) walk for T.
2. In the order of the LRN walk, compute

the table Ci for each node i:
• For leaf nodes i with Xi = { v }:

– Ci(∅) = 0 and Ci({ v }) = 1.
• For join nodes i with children j1, j2 and

Xi = Xj1 = Xj2 and S ⊆ Xi:
– Ci(S) = Cj1(S) + Cj2(S)− |S|.
• For forget nodes i with child j and

Xi = Xj \ { v } and S ⊆ Xi:
– Ci(S) = max

{
Cj(S), Cj(S ∪ { v })

}
• For introduce nodes i with child j and

Xi = Xj ∪ { v } and S ⊆ Xj:
– Ci(S) = Cj(S)

– Ci(S ∪ { v }) =
{
−∞, if ∃w ∈ S : { v, w } ∈ E,
Cj(S) + 1, else.

3. Return the largest value from Cr, the ta-
ble for the root r.

The computation of Ci for leaf nodes is trivial,
as the induced subgraph is by definition the sin-
gle vertex contained in the bag Xi. Thus either
the vertex itself lies in the independent set, or it
doesn’t.

For a join node i, both childrens bags Xj1 and Xj2

contain by definition the same vertices. Because
of the third property of tree decompositions, any
node contained in both subtrees must also be con-
tained in Xi, so we can make the assertion that
the nodes contained in Xi are exactly the nodes
that both subgraphs Gj1 and Gj2 have in common.
So we can, for any S ⊆ Xi, sum over Xj1 and
Xj2 and subtract those that we counted twice. In
Figure 9, we can see that the subgraphs of the sub-
trees of the join node induce those given by the
vertices { b, c, e, a, d } and { b, c, e, f } in Gα respec-
tively, and that the intersection of both is exactly
{ b, c, e }.

For a forget node i with child j and forgotten ver-
tex v, what we do is check if for any S ⊆ Xi, the
set S ∪ { v } preserves the independence property.
If it does, we keep it, else we reject it because it
would have size −∞.

For an introduce node i with child j and added
vertex v, the first thing we do is take over the val-
ues for all Ci(S) with S ⊆ Xj. For those sets with
v ∈ S′, we test if any vertex within S′ has an edge
connecting it to v. If so, this breaks the indepen-
dence property and we return −∞, else we add 1
for the added vertex (note that this might still be
−∞ if S′ itself is not independent).

This algorithm was introduced by Bodlaender [5].

5.3 Complexity

Following the postorder walk has complexity
O(n). As the largest bag contains k + 1 elements
(assuming treewidth k), we need to compute at
most 2k+1 entries for each table Ci. Thus, we ob-
tain a complexity of O(2k+1n) for this algorithm.

This means that for graphs with bounded
treewidth, we have a linear time algorithm for
computing the maximum independent set, as com-
puting a tree decomposition [4], transforming it
into a nice tree decomposition and finding a post
order walk all have complexity O(n).

Let it be noted, that, while technically efficient as
long as the treewidth is bounded, the 2k+1 in the
complexity gets very large nonetheless once the
treewidth increases. This makes it in practice only
useful for graphs of “small” treewidth.

6

6 A PTAS for MIS on planar graphs

6.1 Remarks and definitions

A graph is called planar if it can be embedded
into the plane such that there are no intersecting
edges. The problem of solving the MIS problem
on planar graphs is known to be NP-hard [9].

A graph is called (1)-outerplanar if there exists
an embedding such that every vertex lies on the
outer face of the graph. A graph is called k-
outerplanar if removing all outer vertices (and
incident edges) results in a (k − 1)-outerplanar
graph. The treewidth of a k-outerplanar graph is
bounded by 3k− 1 [10].

For an arbitrary t-outerplanar graph, the layers
of vertices are referred to by the sets L1,L2,. . . ,Lt,
with L1 the outermost and Lt the innermost layer.

We will use the aforementioned treewidth bound
for k-outerplanar graphs in a polynomial-time ap-
proximation scheme. Such a PTAS has a polyno-
mial complexity and provides approximate re-
sults for the problem it is given. More precisely,
for minimisation problems, a PTAS provides a
(1 + ε)-approximation for an ε > 0, and a (1− ε)-
approximation for minimisation problems.

6.2 Algorithm

We now introduce a PTAS that will, for any planar
graph, provide an (1− ε)-approximation of the
maximum independent set in polynomial time [5].

Assume that we are given a planar graph Gγ with
layers L1,. . . ,Lt. First, we choose an ε > 0 (which
will typically be some fraction smaller than 1) and
set l =

⌈ 1
ε

⌉
. We then define Gi = (Vi, Ei) for

i ∈ { 1, . . . , l } such that:

• Vi = Vγ \ { Li+0k, Li+1k, Li+2k, . . . }.
We remove every l-th layer starting at the i-th.
• Ei = Eγ \ { { v, w } | v 6∈ Vi ∨ w 6∈ Vi }.

We remove all edges of which at least one end-
point is not in Vi.

Gγ

L1 L4L2 L5L3 L6

Figure 10: Example for Gγ with 6 layers.

G1

L1 L2 L5L3 L6

Figure 11: G1 for Gγ with ε = 1
3

and thus l = 3, L1 and L1+3=4 removed.

By construction, each of these Gi is at most (l− 1)-
outerplanar. Thus the treewidth for each Gi is
bounded by 3l − 1, as has been stated in sec-
tion 6.1. Since we have an upper bound on the
treewidth, we can compute a tree decomposition
of width 3l− 1 in polynomial time [10] for each Gi.
By applying Algorithm 1 we can convert this into
a nice tree decomposition in linear time. We can
then compute the MIS for each Gi in polynomial
time using Algorithm 2.

As there are l Gi’s and the computation of the
MIS for each has a complexity of O(23l−1 · n), this
PTAS has a complexity of O(23l−1 · l · n).

After computing the MIS for each Gi, we return
the one with the highest cardinality.

7

6.3 Proof of goodness

To prove that the independent set that this PTAS
provides really is an (1− ε)-approximation, we as-
sume W to be a maximum independent set. Then
we can define Wi = W ∩Vi, that is, the vertices in
the MIS that lie in the graph Gi. By construction
it holds that:

∀ v ∈W.∃!i ∈ { 1, . . . , l } : v 6∈Wi

⇒ ∑l
i=1 |Wi| = (l − 1) · |W|

⇒ ∃i ∈ { 1, . . . , l } :

|Wi| ≥ 1
l ∑l

i=1 |Wi|

≥ 1
l · (l − 1) · |W|

≥ 1
1
ε

· (1
ε − 1) · |W|

≥
1
ε−1

1
ε

· |W|

≥ ε ·
(

1
ε − 1

)
· |W|

|Wi| ≥ (1− ε) · |W|

Plainly this means that for each vertex in W on
layer i, there is exactly one Gx that does not con-
tain it, namely the one that removes layer i. Thus,
the sum over the elements of all Wi is the same
as taking l times W but removing each layer once,
thus obtaining (l − 1) · |W|.

Since there must be at least one Wi larger or equal
than the average Wj, we can simply set up that in-
equation and transform the equation until we find
that |Wi| ≥ (1− ε) · |W|, which is exactly what we
were trying to show.

7 Conclusion

After introducing the notions of tree decompo-
sition and treewidth along with other concepts,
we have looked at their applications on usually
NP-complete problems. We have seen algorithms
solving the maximum independent set problem
efficiently on trees, SP-graphs and graphs of small
treewidth. The last algorithm we introduced was
a polynomial-time approximation scheme capable

of approximating the maximum independent set
of arbitrary planar graphs.

This means that, for applications which can make
assumptions about the properties of the graphs
they work on, algorithms that exploit treewidth
and related concepts can be powerful tools in re-
ducing the complexity of usually hard problems.
If an application only requires an approximate so-
lution, this in general represents a computational
advantage. This is, as we have seen, also the case
for algorithms exploiting the treewidth of graphs.

References

[1] Rudolf Halin. S-functions for graphs. Journal
of Geometry, 8:171–186, 1976.

[2] Neil Robertson and Paul D. Seymour. Graph
minors iii: Planar tree-width. Journal of Com-
binatorial Theory, Series B, 36(1):49–64, 1984.

[3] Uriel Feige, MohammadTaghi Hajiaghayi,
and James R. Lee. Improved approximation
algorithms for minimum-weight vertex sep-
arators. Proceedings of the 37th Annual Sym-
posium on the Theory of Computing, pages 563–
572, 2005.

[4] Hans L. Bodlaender. A linear-time algo-
rithm for finding tree decompositions of
small treewidth. SIAM Journal on Comput-
ing, 25(6):1305–1317, 1996.

[5] Hans L. Bodlaender and Arie M. C. A. Koster.
Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal,
51(3):255–269, 2007.

[6] Hans L. Bodlaender and Babette van
Antwerpen-de Fluiter. Parallel algorithms
for series parallel graphs and graphs with
treewidth two. Algorithmica, 29:543–559,
2001.

[7] David Eppstein. Parallel recognition of series-
parallel graphs. Information and Computation,
98(1):41–55, 1992.

[8] Ton Kloks. Treewidth, Computations and Ap-
proximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

8

[9] Vladimir E. Alekseev, Vadim Lozin, Dmitriy
Malyshev, and Martin Milanič. The Maximum
Independent Set Problem in Planar Graphs, vol-
ume 5162 of Lecture Notes in Computer Science.

Springer, 2008.

[10] Hans L. Bodlaender. A partial k-arboretum
of graphs with bounded treewidth. Theoreti-
cal Computer Science, 209(1):1–45, 1998.

9

	Introduction
	Introducing Treewidth
	Tree decomposition
	Treewidth
	Treewidth approximation

	MIS on Trees
	Treewidth of trees
	Algorithm

	MIS on SP-graphs
	Treewidth of SP-graphs
	Defining SP-graphs
	SP-trees
	Algorithm

	MIS on graphs of small treewidth
	Nice tree decomposition
	Algorithm
	Complexity

	A PTAS for MIS on planar graphs
	Remarks and definitions
	Algorithm
	Proof of goodness

	Conclusion

