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1 Introduction

This paper gives a short introduction to
the topic of treewidth and focuses on get-
ting a better understanding based on its
characterisations. For this the concept
of tree decomposition is explained, which
is necessary for treewidth and bounded
treewidth. There will be given many
classes of graphs and shown that they have
bounded treewidth of some small constant
k. This can be used to solve many NP-
complete problems. As an example the
maximum independent set problem will be
discussed.
Because trees are in generel algorithmi-
cally easy to deal with, graph classes with
similar properties are sought. The class of

bounded treewidth graphs turns out to be
such.

2 Preliminaries

At first we will establish some terminol-
ogy. In the following paper a graph is an
ordered pair G = (V,E) containing a set
of vertices V and a set of edges E, where
E ⊆ V ×V and E is symmetric. Hence all
graphs in this paper are undirected. Self-
loops and parallel edges dont cause any
problems and therefore they are allowed.

Definition:
A tree decomposition of a grah G = (V,E)
is a pair ({Xi|i ∈ I}, T = (I, F )) where
T is a tree with nodes Xi, Xi ⊆ V for all
i ∈ I satisfying

•
⋃
i∈I

Xi = V

• For all edges (v, w) ∈ E there exists
an i ∈ I with v ∈ Xi, w ∈ Xi

• For all i, j, k ∈ I it holds that if j
is on the path from i to k in T then
Xi ∩Xk ⊆ Xj

The treewidth of a tree decomposition
({Xi|i ∈ I}, T = (I, F )) is defined to be
max
i∈I
|Xi| − 1 and the treewidth of a graph

G is the minimum treewidth over all tree
decompositions of G.
Figure 1 shows an example graph with tree
decomposition.
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Figure 1: Example graph together with an optimal tree decomposition with treewidth 2

3 Bounded treewidth
graphs

Definition:
A class of graphs has a bounded treewidth
of k, if the maximum treewidth of all
graphs in the class is lower or equal k.

Graphs with bounded treewidth:

• Trees anf forests (treewidth 1)

• Circles (treewidth 2)

• Outerplanar graphs (treewidth 2)

• Series-parallel graphs (treewidths 2)

• Halin graphs (treewidth 3)

• k-outerplanar graphs (treewidth
3k − 1)

3.1 Trees and Forests

As mentioned above trees and forests
have a bounded treewidth of 1. If so,
it holds, that in an optimal tree decompo-
sition ({Xi|i ∈ I}, T = (I, F )) of a graph
G = (V,E), |Xi| ≤ 2, for every set Xi.
It follows, that for every edge (v, w) ∈ V
there needs to be a set Xi, which contains
only v and w. Furthermore a graph G has
treewidth 1, if and only if G is a tree or
forest. This observation will be proofed
later, when we look at circles.

Proof:
Let G = (V,E) be an arbitrary tree. We
construct a tree decomposition of G in the
following way. Start with a random vertex
v ∈ V , X0 = {v}, I = {0} and iterate over
G in depth first search order. Let w ∈ V
be the vertex discovered in the current
iteration. Now there are 2 possibilities:
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Figure 2: 3 possible attempts to build a tree decomposition of treewidth 2 for the K3

1 There is an edge (x,w) ∈ E with
x ∈

⋃
i∈I

Xi. Because w was just cur-

rently discoverd it holds, that w /∈⋃
i∈I

Xi. Now let x ∈ Xi, i′ /∈ I,

I ′ = I ∪ {i′}, Xi′ = {x,w} and
T ′ = (I ′, F ∪{i, i′}). Assuming with
induction, that we had a tree de-
composition before, we now added
a new set with one known vertex x
and one unknown vertex w. One
can easyly see, that the first two
properties are fullfilled. The known
vertex causes no problems, because
the set Xi′ is connected to a set Xi,
which contains x. So for Xi the third
property was already fullfilled. The
only paths that are new in ({Xi|i ∈
I ′}, T ′) lead over Xi, so the prop-
erty is fullfilled. The unknown ver-
tex w causes no problems, because
there cannot be two sets Xj , Xk ∈
{Xi|i ∈ I} with Xj ∩Xk = {w}. So
({Xi|i ∈ I ′}, T ′) is a tree decompo-
sition of the graph induced by the
already discovered vertices.

2 There is no edge (x,w) ∈ E with
x ∈

⋃
i∈I

Xi. Then G is a forest and

we can proceed with the next ver-
tex. We just need to connect the
components of the tree decompo-
sition randomly, because there are
only different vertices in the compo-
nents.

3.2 Circles

Circles have a bounded treewidth of 2. At
first we will see, why circles cannot have
treewidth 1 and proof, that if and only if a
graph has treewidth 1 it is a tree or forest.
For this we will take a look at the circle
with 3 vertices and 3 edges, G = (V =
{a, b, c}, E = {(a, b), (a, c), (b, c)}). If we
want to consruct a tree decomposition
with treewidth 1, we have one set for ev-
ery edge again, X0 = {a, b}, X1 = {a, c},
X2 = {b, c}. Now there are 3 possible
ways of building a tree with 3 vertices.
For each i ∈ I there is a tree, where i
is between the two other vertices, as its
shown in figure 2. X0 ∩ X1 = {a} ( X2,
X0∩X2 = {b} ( X1, X1∩X2 = {c} ( X0.
So its not possible to fullfill the third prop-
erty with sets with 2 elements. The same
method can be used analog for arbitrary
circles.
Next we will proof, that circles have a
treewidth of 2. For an easier understand-
ing we imagine a circle as two paths, which
are connected at their ends.

Proof:
Let G = (V,E) be a circle. Let G1 =
(V1, E1) be the subgraph of G induced by a
path with length |V |/2 and G2 = (V2, E2)
the subgraph induced by V \ V1. Fur-
ther a1 6= b1 ∈ V1 be the vertices with
degree 1 in G1 and a2 6= b2 ∈ V2 the
vertices with degree 1 in G2, so that
(a1, a2), (b1, b2) ∈ E. For both of these
subgraphs one can construct a tree de-
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composition with treewidth 1. For a graph
G3 = (V1∪V2, E1∪E2∪{(a1, a2)}) its still
possible by connecting the tree decompos-
tions of G1 and G2 in the right way. If
we now add the edge (b1, b2) and connect
b1, b2 to one end of the tree decomposition
of G3, the third property is not fullfilled
anymore. But the only proplematic case
is the patch from one end of hte tree de-
composition to the other, where either b1
or b2 is in the cut. Assuming b1 is in the
cut we can now modify each set Xi, by
adding b1. By this we obtain a tree de-
composition of G with treewidth 2.

3.3 Complete Graphs

To show that complete graphs with n ver-
tices have a treewidth of n − 1 we take a
look at the graph with 4 vertices. We will
see, that for complete graphs the tree de-
composition consists of only one set which
contains all vertices. The given proof can
be transferred to any complete graph.

Proof:
Let G = (V = {a, b, c, d}, E) be the
complete graph with 4 vertices. To ob-
tain a treewidth smaller than n − 1 we
need to build sets with less than n ele-
ments. Without limitation of generality
we assume the sets {a, b, c}, {b, c, d} to
be taken. To cover all edges we need to
add the set {a, d}. We can now easily
see that the path condition of tree de-
compositions cant be fullfilled anymore.
Because {a, b, c}∩{a, d} = {a} ( {b, c, d},
{b, c, d} ∩ {a, d} = {d} ( {a, b, c},
{a, b, c} ∩ {b, c, d} = {b, c} ( {a, d}.

Figure 3: 3 operations that can be used to
obtain a series-parallel graph

3.4 Series-parallel Graphs

Definition:
The graph with 2 vertices and one edge
is series-parallel. Let G = (V,E) be
a series-parallel graph. Another series-
parallel graph G′ can be obtained by one
of the following 3 ways, also shown in fig-
ure 3:

1 replacing an edge by two parallel
edges

2 adding a new vertex v′ and a new
edge (v, v′) with v ∈ V

3 adding a new vertex v′ and replac-
ing an edge (v, w) ∈ E by the new
edges (v, v′) and (v′, w)

Series-parallel graphs have a bounded
treewidth of 2.
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Proof:
Let G be a series-parallel graph and
({Xi|i ∈ I}, T = (I, F )) a tree decomposi-
tion of G with treewidth smaller or equal
2 and G′ a graph, which is obtained by
one of the 3 operations mentioned in the
definition, ergo a series-parallel graph. We
can assume this, because we can always
start with the graph with 2 vertices and
one edge, which obviously has treewidth
1. Given that, we can build a tree decom-
position of G′ as follows:

• if operation 1 is used, the tree de-
composition of G already is a tree
decomposition of G′

• if operation 2 is used, a new vertex v′

and a new edge (v, v′) is added. Now
let i′ /∈ I, and Xi′ = {v, v′}. Because
v is not a new vertex there must be
Xi with v ∈ Xi. Furthermore let
I ∪ {i′} and T ′ = (I ′, F ∪ {(i, i′)}).

• if operation 3 is used, an edge
(v, w) is replaced and a new ver-
tex v′ is added. If an edge (v, w)
is replaced, there must be i ∈ I
with v, w ∈ Xi. Now let i′ /∈ I,
I ′ = T ∪ i′, Xi′ = {v, w, v′} and
T ′ = (I ′, F ∪ {i, i′)}).

Than ({Xi|i ∈ I ′}, T ′) is a tree decom-
position of G′ with treewidth(G′) ≤ 2.
The treewidth cannot grow larger than 2,
because we add at maximum a set with
3 Elements. Also the added sets fullfill
the first two properties of a tree decom-
position. The remaining path condition
is fullfilled too, because for the already
known vertices in the added set the path
condition was fullfilled in the old tree de-
composition and we connected it to a set
which contained the known vertices al-
ready. The unknown vertex v′ cannot
violate the condition, because it occurres
only one time in the tree decomposition.

So there is no possible vertex of the tree
decomposition with Xi′ ∩Xi = v′.

Next we take a look at outerplanar graphs.
A graph is outerplanar, if one can add a
new vertex which is connected to all other
vertices and the graph remains planar.
It can be shown, that every outerpla-
nar graph is series-parallel. Because of
that outerplanar graphs have a bounded
treewidth of 2. Furthermore it can be
shown, that every graph with treewidth 2
or less is series parallel.
K-outerplanar graphs have a bounded
treewidth of 3k − 1. The proof can be
found in [4].

3.5 Planar Graphs

In general planar graphs do not have
bounded treewidth. The class of grid
graphs are planar and it can be shown,
that the n×n grid graph has treewidth of
exactly n. In figure 4 the 3× 3 grid graph
is shown, together with a tree decomposi-
tion of treewidth 3.

4 Solving Independent Set
with Tree Decomposi-
tion

We now take a look at the maximum in-
dependent set problem, which is a well
known NP-hard problem. With the help
of the tree decomposition of a graph we
will show an algorithm, which determines
the maximum independent set in polyno-
mial time.
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Figure 4: 3× 3 grid graph and an optimal tree decomposition of treewidth 3

Definition:
A maximum independent set of a graph
G = (V,E) is a subset W ⊆ V with maxi-
mum size, so that for all v, w ∈W it holds
that (v, w) /∈ E.

Let ({Xi|i ∈ I}, T = (I, F )) be a tree de-
composition of a graph G with treewidth
k. Then there is always a rooted binary
tree decomposition of G with treewidth
k. This means a tree decomposition, with
a fixed root and every vertex which is no
leave has 2 childs. For a rooted binary
tree decomposition of G let G[Xi] be the
graph induced by Xi and all of his childs
on G.
We can now use a dynamic program to
solve the problem in the following way:
We assume Z = W ∩ Xi is the indepen-
dent subset in G[Xi] and si(Z) the size of
this subset. For leave nodes Xi all 2|Xi|

values of si(Z) are found by:

si(Z) = |Z|, if ∀v, w ∈ Z : (v, w) /∈ E
−∞, if ∃v, w ∈ Z : (v, w) ∈ E

For inner nodes i and child nodes j and
k and if for all v, w ∈ Z : (v, w) /∈ E the
formula is:

si(Z) = max
Z∩Xj=Z′∩Xi,Z∩Xk=Z′′∩Xi

{sj(Z ′) +

sk(Z ′′)+|Z∩(Xi\Xj\Xk)|−|Z∩Xj∩Xk|}

and si(Z) = −∞ for v, w ∈ Z : (v, w) ∈
E. Z ′ and Z ′′ denote the Z for the left
and right child of i.
The given algorithm generates a maxi-
mum independent set for a graph G if
given a tree decomposition of G with
treewidth k in time O(n · 23k).
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