Embedding a Planar Graph using a PQ-Tree

Niklas Kotowski

RWTH Aachen

May 4, 2018

Niklas Kotowski (RWTH Aachen) Embedding a Planar Graph using a PQ-Tree

3 May 4, 2018 1 / 71

• • • • • • • • • • • • •

590

Table of Contents

- Preliminaries
 - oplanarity
 - st-numbering
 - bush form
 - pq-tree
- 2 Algorithms
 - PLANAR
 - EMBED
 - ENTIRE-EMBED
 - UPWARD-EMBED
 - All Embbedings

Sar

- ∢ ∃ ▶ - 4

< □ ▶

motivation

Practical Use of Planarity:

design of VLSI Circuits

• determining isomorphism of chemical structures

last week: planarity? how to test if a graph is planar ? **this week:** how to give an embedding of a planar graph ?

planarity

intuitive definition

the graph can be drawn without any crossing edges

alternative definition

graph is planar, if the nonseperable components are planar

nonseperable component

we cannot split the graph into two components by deleting any vertex

example:

st-numbering

- each vertex gets a number
- 1 is called source denoted by s
- n is called sink denoted by t
- s and t have to be adjacent
- every vertex j except s and t have to fullfill:
 - i < j < k
 - for adjacent vertices i,k

- 3 € ▶

Sar

upward graph

900

< □ > < @ > < 注 > < 注 > ... 注

bush form B_k

- Graph G is reduced to k Nodes
- contains all virtual edges
- places virtual vertices on a horizontal line

(日)

DQC

pq-tree

P-Node:

- a cut vertex
- can be permuted arbitrarily
- represented by a circle

Q-Node:

- a non seperable component
- can only be reversed
- represented by a rectangle

a pq-tree represents all possible permutations of the elements of a given set

SQC.

- 4 目 ト - 4 日 ト

- Elements are shown in the leafs a,b,c,d,e,f
- all possible combinations:
- abcdef, abcfed, cbadef, cbafed, fedabc, fedcba, defabc, defbca

Niklas Kotowski (RWTH Aachen) Embedding a Planar Graph using a PQ-Tree

PLANAR

some preliminaries regarding PLANAR:

pertinent

vertices labelled v + 1 are pertinent

pertinent subtree

the subtree with all pertinent vertices

full

a node is full if all descendants are pertinent

Sac

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

template matchings

• if a node has only full childs, the node is marked full too

< □ ▶

-4 3 Sar

template matchings

• if a node has a pair of full childnodes, a new P-node is created with the full nodes as children

PLANAR

```
initialization;
assign st-numbers to all vertices of G;
construct a PQ-tree corresponding to G_1';
begin
    for v \leftarrow 2 to n do
        reduction step \rightarrow align vertices v + 1;
        if reduction step fails then
           "G is nonplanar"
        end
        vertex addition step \rightarrow replace all full nodes of the PQ-tree by a
         new P-node;
    end
    "G is planar";
end
```

Algorithm 1: Planar testing algorithm

200

- 4 ⊒ ▶

< /₽ > < E >

PLANAR

PLANAR

the algorithm has two steps:

• reduction step:

align the vertices v+1

• vertex addition step:

replace full node by a new P-node add all neighbours larger than v to the P-node

 \rightarrow let's look closer at it with an example

э.

< 3

initialize:

• assign st-numbers to all vertices of G

PQ-tree corresponding G_1

590

15 / 71

< 🗆 🕨

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< □ ▶

< 3

э

DQC

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< 3

э

DQC

reduction step:

• align vertices v+1

▲ロト ▲圖ト ▲国ト ▲国ト

クへへ 18 / 71

3

reduction step:

• align vertices v+1

▲ロト ▲圖ト ▲国ト ▲国ト

3

590

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< 3 - DQC

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

 DQC

21 / 71

3

example

reduction step:

▲ロト ▲圖ト ▲国ト ▲国ト

E 990

reduction step:

• align vertices v+1

▲ロト ▲圖ト ▲国ト ▲国ト

3

590

vertex addition step:

▲ロト ▲圖ト ▲国ト ▲国ト

Ξ.

990

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< 3 э DQC

example

reduction step:

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ.

990

reduction step:

• align vertices v+1

66555

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

< □ ►

3

590

27 / 71

vertex addition step:

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ.

990

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< □ ▶

< 3

3

Sar

29 / 71

vertex addition step:

▲ロト ▲圖ト ▲屋ト ▲屋ト

E 990

vertex addition step:

- replace full node by a new P-node
- add all neighbours larger than v to the P-node

< □ ▶

< 3 4 э DQC

	σc	rit	ms	
, u	84		 	

runtime

- we have two steps in this algorithm
- the vertex addition steps execution time depends on the vertex degree, so at most **O(n)**
- the reduction step applies template matchings and aligns vertices in each step, it is not straightforward to see that all together need **O(n)**
- the whole algorithm takes linear time O(n)

embedding

until here, we can just **test** whether a given graph is planar or not ?

embedding of B₄:

- Adj(1) = 2, 3
- Adj(2) = 1, 3, 4
- Adj(3) = 1, 2, 4
- Adi(4) = 3, 2
- vertices ordered clockwise

・ロト ・ 同ト ・ ヨト ・ ヨト

Jac.

upward embedding

upward embedding of *B*₄:

- $Adj(1) = \emptyset$
- Adj(2) = 1
- Adj(3) = 1, 2
- Adi(4) = 3, 2
- vertices ordered clockwise

(日)

SQC.

naive embedding

algorithm:

- modify PLANAR
- in every step we write down the adjacency list of the bush form
- after n steps we have an embedding of the graph
- every step takes O(n)
- runtime $O(n^2)$

$O(n^2)$ is too much, therefore I present a linear time algorithm

• • = • •

Sac

35 / 71

э

EMBED

EMBED

algorithm runs in two phases:

• 1.phase:

obtains an upward embedding A_u of G UPWARD-EMBED

• 2.phase:

with A_u , we construct a complete embedding A of G ENTIRE-EMBED

E ∽ar

ENTIRE-EMBED

initialize:

- copy the upward embedding A_{μ} and mark every vertex as new
- start a depth first search(DFS) on the copy

in detail DFS(x):

- x is marked as old
- for every adjacent vertex v insert x to the top of $A_{\mu}(v)$
- if v is marked a new, execute DFS(v)

Sac

A = A = A

example

• basic graph with st-numbering

(日)

. . ⊒ . ► DQC

example

• upward embedding of the graph

▲ロト ▲圖ト ▲屋ト ▲屋ト

590

example

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ.

990

40 / 71

example

▲ロト ▲圖ト ▲屋ト ▲屋ト

example

▲ロト ▲圖ト ▲屋ト ▲屋ト

∃ 990

42 / 71

example

Ξ. May 4, 2018 43 / 71

590

▲ロト ▲圖ト ▲屋ト ▲屋ト

example

- 4 ⊒ ▶

DQC

example

590

▲ロト ▲圖ト ▲屋ト ▲屋ト

example

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

590

Constructing A_u

naive algorithm:

- a naive algorithm works by scanning the leaves in each addition step
- fix the direction by counting the number of reversions made and if its odd, reverse A_u
- this easy implementation takes $O(n^2)$, thats again too much

UPWARD-EMBED:

- modification of vertex addition step, mentioned earlier
- uses direction indicator vertices
- takes linear time O(n)

= nar

・ロト ・ 同ト ・ ヨト ・ ヨト

direction indicator

• a **node** represented by a **triangle** pointing left: pointing right:

- traces the **reversions** of A₁₁
- will be reversed with each parent reversion
- indicates the order of the adjacency list

Sac

- 3 € ▶

UPWARD-EMBED

Two things are different in the vertex addition step:

- when and where to add the indicators ?
 - we add a query which tests if the root of the pertinent subtree is not full
 - if not, we add a direction indicator pointing from the higher labelled node to the lower as a childnode
 - else we do the regular vertex addition step

- when to reverse the adjacency list ?
 - for each element x in A_{μ} check if it is a direction indicator
 - delete x and if the direction is opposite, reverse the list

Sac

new vertex addition step:

• if the root of the pertinent subtree is not full

< □ ▶

3

- 4

3

DQC

new vertex addition step:

- if the root of the pertinent subtree is not full
- add an indicator directed from l_k to l_1

PQ-tree corresponding B'_3

 $A_u(3) = 2, 1$

example

reduction step:

▲ロト ▲圖ト ▲屋ト ▲屋ト

E 990

reduction step:

• align vertices v+1

46

▲ロト ▲圖ト ▲屋ト ▲屋ト

5

Ξ.

990

53 / 71

example

new vertex addition step:

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ. 54 / 71

990

new vertex addition step:

- if the root of the pertinent subtree is not full
- add an indicator directed from l_k to l_1

PQ-tree corresponding B'_3

$$A_u(4) = 2, di(3), 3$$

Niklas Kotowski (RWTH Aachen)

correction step:

- for each direction indicator x, delete x and check if it has the opposite direction to that of $A_u(v)$, if yes **reverse** the list $A_u(x)$
- $A_{\prime\prime}(2) = 1$ • $A_u(3) = 1, 2$ • $A_{ii}(4) = 2, \overrightarrow{di(3)}, 3$ • $A_u(5) = 4, \overleftarrow{di(4)}, 2, 1$ • $A_{\mu}(6) = 1, 3, 4, 5, \overrightarrow{di(5)} \rightarrow \text{no reversion!}$

▶ **4 글** ►

correction step:

• for each direction indicator x, delete x and check if it has the opposite direction to that of $A_u(v)$, if yes **reverse** the list $A_u(x)$

•
$$A_u(2) = 1$$

• $A_u(3) = 1, 2$
• $A_u(4) = 2, \overrightarrow{di(3)}, 3$
• $A_u(5) = 4, \overrightarrow{di(4)}, 2, 1 \rightarrow \text{reverse } A_u(4)$
• $A_u(6) = 1, 3, 4, 5$

-

Sac

correction step:

for each direction indicator x, delete × and check if it has the opposite direction to that of A_u(v), if yes reverse the list A_u(x)
A_u(2) = 1
A_u(3) = 1, 2
A_u(4) = 2, di(3), 3 → A_u(4) = 3, di(3), 3 → reverse A_u(3)
A_u(5) = 4, 2, 1
A_u(6) = 1, 3, 4, 5

= nar

< />

correction step:

 for each direction indicator x, delete x and check if it has the opposite direction to that of $A_u(v)$, if yes **reverse** the list $A_u(x)$

•
$$A_u(2) = 1$$

•
$$A_u(3) = 1, 2 \rightarrow A_u(3) = 2, 1$$

•
$$A_u(4) = 3, 2$$

•
$$A_u(5) = 4, 2, 1$$

•
$$A_u(6) = 1, 3, 4, 5$$

• no di(x) left !

Sac

A (10) F (10)

runtime

runtime

- we add our direction indicators directly into our adjacency lists
- in the last step we check the lists and reverse them if the indicator is reversed
- at maximum n indicators, therefore O(n) runtime

▶ **4 글** ►

- what if we want to gather all possible embeddings ?
- we have to permute and reverse the adjacency lists regarding different rules

- first of all we have to write down some definitions and
- there are different graph structures we have to handle correctly

idea of the algorithm

- we can categorize different parts of the adjacency lists to be reversed or permuted
- we are adding parantheses and brackets to display the possible operations
- if we execute all possible operations we get all planar embeddings

 $\{x, y\}$ pair of vertices in G

equivalence classes of edges E_i

two edges are in the same **class** if the edges lie on the same path and contain any vertex $\{x, y\}$ only as an end vertex

seperation pair

if there exist at least two equivalence classes E_i , E_j with minimal 2 elements each, the selected pair $\{x, y\}$ is labelled **seperation pair**

split-component

a subgraph $G_i = (V_i, E_i)$ induced by an equivalence class is called an $\{x, y\}$ split-component

Sar

(日)

find all possible embeddings

 $\{x, y\}$ pair of vertices in G

 $\{s, t\}$ as defined in the beginning is used as a reference of all embeddings

$\{s, t\}$ -component

if $\{s, t\}$ is not a separation pair, the graph without the vertices $\{s, t\}$ is labelled $\{s, t\}$ -component

Sac

< //>

we get different embeddings for these operations:

• if {*x*, *y*} is a seperation pair:

- (i) swap the $\{x, y\}$ -split-components with the $\{x, y\}$ -edge
- (ii) flip over the $\{x, y\}$ -split-components

• if $\{x, y\}$ is not a separation pair:

(iii) reverse the $\{s, t\}$ -component

• if we execute all possible operations, we get all possible embeddings

Sac

< //>

example

• Fig.1:

• permutation of $\{x, y\}$ - split components and the edge (x,y)

900

▲ロト ▲圖ト ▲屋ト ▲屋ト

example

• Fig.2:

• reverse the $\{x, y\}$ - split components

DQC

(日) (四) (三) (三)

operations on the **adjacency lists** A_{μ} :

- (a) case (i): permute the sublists $L(u_1), L(u_2), ... L(u_l)$ of $A_u(v)$, where u_1, \dots, u_l are the sons of v
- (b) case (ii): permute the sublists $L(u_2), ...L(u_l)$ of $A_u(t)$, where $u_2, ..., u_l$ are the sons of t
- (c) case (iii): reverse the sublists $L(u_1), L(u_2), ..., L(u_l)$ of $A_{u}(v)$, where u_1, \ldots, u_l are the sons of v

- ∢ ∃ ▶

< A > < A > <

formal structures applied to the adjacency lists:

- we define L(v) to be the list which contains all descendants of the PQ-tree node v
- we use parenthese to signalize that we can permute a sublist $L(u_i)$
- we use brackets to display a possible reversion of the sublist $L(u_i)$

example:

- $A_u(v) = (L(u_1), L(u_2), L(u_3))$
- indicates, a possible permutation of u_1 , u_2 and u_3

GENERATE

GENERATE

- apply the operations a), b) and c) to the sublists to specify all possible permutations and reversions
- UPWARD-EMBED
- ENTIRE-EMBED

Sar

< //>

Questions

thank you for your attention

any questions ?

Niklas Kotowski (RWTH Aachen) Embedding a Planar Graph using a PQ-Tree

3 May 4, 2018 71 / 71

Sac

(日)