
Gather Planar Embeddings using a PQ-Tree

Niklas Kotowski (353823)
niklas.kotowski@rwth-aachen.de

June 7, 2018

Contents

1 Definitions 1

1.1 Notation 1

1.2 Planarity 1

1.3 St-numbering 2

1.4 Bush form 2

1.5 Embedding 3

1.6 PQ-tree 3

1.7 Template matchings 3

2 Algorithms 4

2.1 Planar 4

2.2 Embed 6

2.3 Upward-Embed 6

2.4 Entire-Embed 7

2.5 Simplified Embedding Algorithm . 8

3 All Embeddings 9

3.1 Generate 9

4 Conclusion 10

Abstract

For many different problems in theoretical com-
putersience it is useful to make sure that the used
graph is planar. In practice, only testing for pla-
narity is often not enough, because we want a pla-
nar embedding as well. Algorithms executed on a
planar graph often run in less time, because in lots
of cases we can use the characteristics of planarity
to give a modified and more efficient algorithm.
Characteristics like every planar graph is four col-
orable, which means that you can color each ver-
tex without having two vertices adjacent with the
same color [1]. This advantage or possibility of
a more efficient execution is especially found in
coloring algorithms.

Another practical application is the design of
VLSI circuits, circuits in general need to provide
special criteria regarding crossing conductors to
avoid unwanted electrical flow. Therefore if the
circuit is planar we can be sure that we can embed
it without crossing edges.

The last important aspect is that planarity is
used in chemical topics concerning determining
isomorphism between chemical structures. Re-
stricting the chemical problems to planar graphs
can improve the runtime to a linear bound time
[4].

This paper is structured chronologically build-
ing a general understanding of planarity and the
used definitions, following of algorithms for testing
and embedding a planar graph.

1 Definitions

1.1 Notation

In the whole paper a graph G consists of an edge-
set E and a vertex-set V , which is denoted by n.
The number of vertices of a graph and all graphs
are assumed to be nonseperable. A graph is non-
seperable, if we can delete any vertex without
splitting the graph into two single components.

1.2 Planarity

An intuitive way to describe planarity is to say
that if an embedding with no crossing edges of G
exists, G is planar. Therefore the easiest way to
check if a graph is planar is to test if we can em-
bed a graph fulfilling this requirement. Another
definition states that a given graph is planar if
all the nonseperable components (also known as
biconnected components) are planar. This is use-
ful if the graph can be splitted into nonseperable
components, and a parallel execution of a testing

1

algorithms on different subgraphs can be executed
resulting in a better runtime. The last definition
needed later in this paper is, that a graph is non-
planar if it contains the K5 or K3,3 graph as a
subgraph [9]. The figure showing these graphs is
not included, but can be seen in [8].

There exist several algorithms focusing on test-
ing if a given graph is planar. Starting with the
first planar testing algorithm from Hopcraft and
Tarjan, which focused on adding a planar path
each step, followed by algorithms which add one
vertex or edge in each step [7].

This paper will focus on describing a testing al-
gorithm based on the mentioned vertex addition
for planarity and further modifiying the algorithm
in order to gather an embedding.

Figure 1: a planar graph

Figure 2: a nonplanar graph

1.3 St-numbering

An st-numbering assigns every vertex of the given
graph a number. We define one node to be the
source=1 and one to be the sink assigned with
n and denoted by t. The source and sink have to
be adjacent. And every vertex has to fulfill the re-
quirement that there is a higher and lower labelled
vertex adjacent to it. For every node 2, .., n − 1,
there exist two adjacent vertices vj , vk with edges
(vj , vi), (vk, vi) and j ≤ i ≤ k [6].

In the first algorithm in each step one vertex
and the adjacent nodes are added, therefore the
algorithm uses an st-numbering to have an useful
ordering of the nodes.

For a further understanding, I am going to
present a small description of an algorithm which
computes an st-numbering. This algorithm is
structured in three phases. As an input it takes
a nonseperable graph and an edge with the ver-
tices {s, t}, which will represent the st-numbering.
The first phase of the algorithm uses a depth first
search and assigns a preordering to the graph.
In detail this means labelling each vertex with a
number and generating a spanning tree. A span-
ning tree is a subgraph with all vertices and not-
necessarily all edges. In this case all the outgo-
ing edges of t expect (t, s) are deleted. In the
second phase, a pathfinding algorithm will extend
this spanning subtree. Initially s, t and the edge
(s, t) are marked old. The pathfinder will find a
path between s, t not containing both and mark
this path old, too. When it is finished it has
marked all vertices on all the existing paths from s
to t old. Finally the third phase computes the st-
numbering, all old vertices are stacked on a stack
with s on top. In each step the pathfinder algo-
rithm is executed on the top vertex, the vertex
gets deleted and if the pathfinder returns no path,
the vertex gets assigned the next higher number.
If the algorithm returns a path, then all vertices
expect the end vertex of the path are added to
the top of the stack. When the stack is empty, we
have a correct st-numbering of the graph [6].

1=s

3 2

6=t 5

4

Figure 3: st-numbering

1.4 Bush form

A bush-form (Bk) is a reduction of the original
graph G to a few nodes, basically a subgraph in-

2

duced by only a part of the vertices limited by an
index k. Vk describes the vertex-set, limited by k.
All the vertices of the graph, which are not ele-
ment of Vk are called vertical vertices labelled Vv

(Vv := V − Vk). Analogy all edges not included in
Ek, the set with all to Vk adjacent edges are called
virtual edges denoted by Ev := E − Ek. The by
k induced subgraph contains all virtual edges and
virtual vertices stored in a horizontal line below
the graph.

Fig.4 shows the bush form B4, regarding the
graph shown in the example before in Fig.3 [5].

1

3 2

4

5 6 6 5 5 6

Figure 4: bush form B4

1.5 Embedding

The main topic of this paper is to create a pla-
nar embedding, if there exists one. An embedding
only consists of an adjacency lists for each vertex
with the additional requirement that all vertices
are stored in clockwise order. This very little piece
of information is surprisingly enough to build a
complete embedding of a graph [5].

1

2 3

4 5

Adj(1)=2,3

Adj(2)=1,3,4

Adj(3)=5,2,1

Adj(4)=2,5

Adj(5)=3,4

Figure 5: an embedding

An upward embedding is a special modification,
which stores only outgoing neighbours. Ingoing

edges and adjacent nodes are ignored. This is very
useful, because in a later modification the algo-
rithm will first gather an upward embedding and
complete it in the second part.

1.6 PQ-tree

A pq-tree is a special data structure to represent
all possible permutations of elements of a given
set. It has two different nodetypes. A p-node
drawn by a circle, which allows all possible per-
mutations of the children, and represents a cut
vertex in the given graph. A q-node drawn by a
rectangle, which allows only the reversion of the
childnodes and represent a nonseperable compo-
nent in the given graph. A p-node needs to have
atleast two children or else it would be the same as
a reversion, and a q-node analogy needs to have
atleast three childnodes. Together and with re-
gard of the restrictions, they can create various
combinations of the elements stored in the leaves
[5].

P-Node

Q-Node Q-Node

d e fa b c

Figure 6: pq-tree

possible combinations:
abcdef, abcfed, cbadef, cbafed, fedabc, fedcba,
defabc, defbca

1.7 Template matchings

To understand template matchings, different defi-
nitions regarding the first algorithm and pq-trees
have to be declared. Beginning with a pertinent
vertex. A vertex is pertinent, if it is labelled k+ 1
in the Bk (the bush form in the kth step). As
mentioned before, the algorithm is using a ver-
tex addition method, in each step our bush form
will be extented by one vertex, which will change

3

the pertinent vertices. Also there is a full node,
it is a node with only pertinent descendants [2].
Template matchings are used to have some rules
regarding pq-trees. They define some transforma-
tions we have to apply on the pq-tree in different
situations. In the first case, there is a node with
only full marked descendants, then the parentnode
has to be labelled full aswell.

−→

Figure 7: template matchings 1

In the second case we have only a few descendants
marked as full, our parent node is marked as
partial. A partial node has a few full and a
few not full nodes. In this case a new p-node
with the full substructures as its children is added.

−→

Figure 8: template matchings 2

There are six more template matchings, which are
explained in this paper [2]. The examples pre-
sented are important in order to understand this
simple matchings in combination with the defini-
tion of a full node. The other matchings are used
to get fast transformations of the graph and to
secure a linear runtime.

2 Algorithms

2.1 Planar

At first we have to test if the given graph is planar,
or else we can not give a planar embedding. The
algorithm Planar uses a vertex addition method,
that means adding a vertex in each step.

Beginning only with a bush form B1 and the
corresponding pq-tree. Each step is divided in two
different steps. First all vertices v + 1 (pertinent
vertices) are aligned and template matchings are
applied to the corresponding pq-tree. This step is
called reduction step. If the reduction step, which
tries to align the vertices fails, because we have a
structure where we cannot align all relevant ver-
tices, the input graph G is nonplanar.

Afterwards, the vertex addition step adds the
next higher numbered vertex to our bush form, in
other words the bush-form index is iterated. Be-
cause the next higher vertices are aligned in the
bush- and pq-form, the addition of the new ver-
tex will merge them into one node and add the
relevant neighbour nodes.

The reduction step aligns the vertices v+1
and applies template matchings to the pq-tree.
The second step, the vertex addition step re-
places full nodes by a new P-node and adds all
neighbours larger than v to the P-node. In each
step the index of the bush-form gets iterated un-
til all vertices are included. If the algorithm fails
at some reduction step, it will terminate with the
result that G is nonplanar. Otherwise if the fi-
nal pq-tree is one single node, the input graph is
planar [5].

assign st-numbers to all vertices of G;
construct a PQ-tree corresponding to G1’;
begin

for v ← 2 to n do
reduction step → align vertices v + 1;
if reduction step fails then

“G is nonplanar”
end
vertex addition step → replace all full
nodes by a new P-node;

end
“G is planar”;

end
Algorithm 1: Planar

4

This pseudocode is added to show that this
testing algorithm is very short and intuitive. In
the following example the bush form is displayed
on the left and right to it the corresponding
pq-tree [5](See in Fig 8).

• initialisation G1 and corresponding PQ-tree
1

2 3 4=t 2 3 4

• vertex addition step

1

3 43 4

1

3 43 4

• reduction step

1

3 44 3

1

3 44 3

• vertex addition step

1

4 4 4

1

4 44 4

• vertex addition step

1

2
3

4

• algorithm finished without a reduction fail,
graph is planar

If we execute the algorithm on the graph of
Figure 2, we get the following result:

• initialisation G1 and the corresponding PQ-
tree

1

2 3 4 5=t 2 3 4 5

• vertex addition step

1

3 4 53 4 5

1

3 4 53 4 5

• reduction step

1

3 4 55 4 3

1

3 4 55 4 3

• vertex addition step

5

1

4 55 4 4 5

1

3 4 55 4 3

• at this step we cannot apply the reduction,
that indicates G is not planar

Runtime

After explaining the algorithm very example
based, the runtime has to be analysed in order
to proof linear running time.

Planar executes the two different steps at most
on every vertex, at most n times the reduction
and n times the vertex addition step. Clearly the
initialisation needs only linear time, because the
graph G1 has at most n vertices. Same applies
to the corresponding pq-tree. The vertex addition
step needs at most O(n) time, because in each
step the runtime is limited by the vertex degree,
which is at most n. Regarding the reduction step,
in each step there is the possibility to apply dif-
ferent template matchings and align the relevant
vertices if we have to. The template matchings
which are not completely included in this paper
improve the runtime up to linear time, because
they transform the graph very fast and by some
easy to implement rules [3]. Aligning the perti-
nent vertices is done in linear time, because we
can swap at most n subgraphs. Template match-
ings can either mark a vertex full or add a new
p-node, in this simply cases shown before, adding
one node or marking one is executed in O(n). All
together the algorithm runs in linear time O(n)
[5].

2.2 Embed

Now after explaining and executing the Planar al-
gorithm, it is possible to test if a graph is planar
or not. As the definition declared a planar graph
has to have a planar embedding. In practice the
fact that a graph is planar is not enough, the em-
bedding is needed in order to work with it.

There are a few ways to give an embedding. The
first idea presented in this paper modifies the Pla-
nar algorithm by storing the adjacency list in each
step and tracing the made reversions with a spe-
cial node. Later we will look at a second algorithm
which follows another intuitive idea. A complete
embedding consists of adjacency lists for every ver-
tex stored in clockwise order.

The first algorithm labelled Embed runs in two
phases the first gathers an upward embedding, the
second phase extends it to a complete embedding.

The first phase is called Upward-Embed.
While the Planar algorithm is executed the leaves
have to be reversed many times to align them, this
changes the order of the neighbours from clockwise
to counter-clockwise order. In the final embedding
all adjacency lists are stored clockwise. Therefore
the algorithm has to remember or check if there
have been reversions executed on the regarded ver-
tex. If the number of reversions made is odd the
adjacency list has to be reversed again to get the
right order.

In the second phase, the upward embedding is
completed to an embedding of the whole graph.
This algorithm is named Entire-Embed and
works with a modified recursively executed Depth-
first search, which extends the adjacency lists with
the ingoing adjacent vertices [5].

2.3 Upward-Embed

Upward-Embed, as already mentioned before, cre-
ates an upward embedding of the graph. It is
a modification of the Planar algorithm, which in
each vertex addition step stores the neighbours of
the new vertex in an adjacency list. In order to
trace the reversions in linear time Upward-Embed
uses a special new node, labelled direction indica-
tor and drawn by a triangle pointing clockwise or
counter-clockwise.

A direction indicator is placed among the chil-
dren of the regarded node (Fig.9) to trace if the

6

subtree is going to be worked on later and is re-
versed with every parent reversion. While storing
the nodes in the adjacency lists in each addition
step, the direction indicators are stored there as
well and handled later in the correction step.

6 4 6 54 5

3

Figure 9: direction indicator

In order to understand the idea of the algorith,
it has to be made clear when and where to add
the direction indicators, when they will be deleted
and when the reversions are executed. A direction
indicator is added to the pq-tree each time the al-
gorithm adds a vertex to a parent node which is
not full. If this query is fulfilled a direction indi-
cator labelled with the pertinent vertex is added
as a child of the pertinent vertex. This query is
very important and quite easy to understand. The
algorithm adds a direction indicator if there is a
possible reversion of the subgraph in the future. If
the pertinent subtree regarding the pertinent ver-
tex is full, we can be sure that it won’t be reversed
later. Therefore the algorithm doesn’t add a di-
rection indicator. In the other case, it can’t know
for sure that there won’t be any reversions in a
later addition step.

Finally the added direction indicators have to
be handled in a new single step executed after the
algorithm called correction step. Each adjacency
list is checked for a direction indicator, starting
add the list of the highest labelled node. Every-
time a direction indicator is scanned, it is checked
if it’s pointing clockwise if not the list it is la-
belled with is reversed, and the direction indicator
is deleted. After checking all lists, and deleting all
direction indicators the algorithm terminates with
the correct upward adjacency lists as output [5].

Runtime

As shown in the previous section, the algorithm
Planar needs linear time to test if a given graph is
planar. Upward-Embed modifies the Planar algo-
rithm by storing an adjacency list in each addition
step. This modification is clearly in linear time
possible. The second thing we change is adding a
direction indicator in each step, which produces at
most n indicators resulting in O(n). Finally the
correction step deletes at most n indicators and
executes at most n − 1 reversions. These slight
changes are all in linear time possible, resulting in
an O(n) embedding algorithm [5].

2.4 Entire-Embed

In the previous section is explained how to get an
upward embedding of the whole graph by using
direction indicators to trace reversions. To have a
practical use of the embedding we need the com-
plete embedding.

Therefore Entire-Embed updates the adjacency
lists to gather a complete embedding of the graph.
Entire-Embed consists of a recursively executed
Depth-first search, which extends the adjacency
lists to the vertices of the ingoing edges. The al-
goritm begins with copying the upward embed-
ding received from Upward-Embed and marks ev-
ery vertex initialized as new. Then for t the high-
est labelled node we execute DFS(t), mark t as
old and for each vertex x we visit we add t to
the top of the adjacency list. After adding t we
check if x is marked as new if this is the case we
execute DFS(x) and mark it as old. Again exe-
cuting DFS(x) means adding x to the top of the
adjacency list of the visited vertex and recursively
recasting on the new marked vertices. The algo-
rithm terminates if there is no new marked vertex
left [5].

Runtime

Entire-Embed consists of a recursively executed
Depth-first search. In the whole execution of the
algorithm, the DFS gets at most casted n times
and together nearly executed once completely. A
DFS needs linear time, cause it is bordered by
the edge count resulting in a linear runtime O(n)
for the Entire-Embed algorithm. Both algorithms

7

have a linear runtime resulting in a linear runtime
for the algorithm Embed.

2.5 Simplified Embedding Algorithm

After presenting a quite complicated algorithm to
embed a planar graph, we look at a more intuitive
and easier algorithm. In the following passage we
will not go too deep into detail, but focus on a
different way to test and embed a graph.

This algorithm does not work with a pq-tree,
it uses a data structure which double links every
node and keeps track of all edges and their order.
The used data-structure has a record for each ver-
tex and two records for an edge, the edge vertex
relation is stored in a cyclic list.

Now the algorithm begins with creating a
Depth-first search tree. A DFS tree is the original
graph, with the difference that each edge is either
a tree edge or back edge and every vertex gets an
index assigned. This index, the DFI stores the
time the DFS found the vertex. To create a DFS-
tree, we just have to execute a DFS on the graph,
all the visited edges are marked as tree edge, the
other edges as back edges and the vertices are or-
dered by the DFI.

1

3 2

56

4

• back edges are marked blue

• tree edges are marked green

Figure 10: DFS-tree

The figure 10 shows a possible DFS-tree, after
executing a DFS on the graph.

After creating this DFS-tree we work differently
as in the Embed algorithm with an edge addi-
tion method, that means in each step one edge
is added. Every tree edge is seen as a single com-
ponent and in each step the algorithm connects

two components by securing not to violate the
planarity condition. Each time a new vertex is
added to the existing graph, the back edge gets
added as well and with a special walk up and walk
down method ensured to fulfill the planar condi-
tion. The edges and vertices are added in an order
defined by the DFI. After all edges are added and
some steps regarding the flipping of parts of the
graph and other important aspects which would
break the boundaries of this paper, the algorithm
gathers a complete planar embedding of the graph
if there exists one.

The last important and different aspect in this
way to gather an embedding is to check if the
graph is nonplanar. The algorithm detects while
executing the mentioned walking up and down
part, if there is a Kuratowski subgraph contained
in the graph. A planarity condition explained in
the beginning [3].

To come to a well structured conclusion of the
embedding part, the long described and analysed
embedding technique using a pq-tree achieves lin-
ear time and is quite complicated. The last ex-
plained idea of an algorithm with another data
structure is aswell possible to be embedded in lin-
ear time and follows a completely different idea
closer to the first algorithm from Hopcraft and
Tarjan [7].

8

3 All Embeddings

3.1 Generate

Until here we are able to check if a given graph is
planar and give a planar embedding if there is one.
Strictly each graph has not only one embedding.
For many graphs there exist different embeddings.
To gather all possible planar embeddings we have
to first state the relevant definitions.

First of all we have to select {x, y} a pair of ver-
tices, because the upcoming definitions build di-
rectly on one vertex pair. An equivalence class
of edges denoted by Ei contains all the edges which
lie on the same path having {x, y} only as an end
vertex.

If {x, y} has two equivalence classes with atleast
two elements each, {x, y} is called separation
pair.

To make sure that a part of a graph is planar
and we can reverse it or to swap different planar
parts. We need a strict definition, which makes
sure that this is fulfilled. A subgraph induced
by an equivalence class is called {x, y} split-
component, if the equivalence class has atleast
two elements.

At last we can swap the whole embedding
around, which is defined by {s, t}-component.
If we choose {s, t} as the vertex-pair {x, y} and
{s, t} is not a seperation pair, then the subgraph
induced by the original graph without {s, t} is a
{s, t}-component.

After defining all the necessary formal struc-
tures we can divide the algorithm in two cases and
analyse why they imply different operations to be
casted on the adjacency lists. The Generate algo-
rithm represents the possible edge swappings and
reversions we can perform on parts of the graph
by adding parentheses for a possible permutation
of objects and brackets for a reversion of a selected
set.

The algorithm tests if {x, y} is a seperation pair
or not. If it is a seperation pair it is allowed
to swap the different {x, y}-split-components with
the {x, y} edge (there dont has to be a {x, y}
edge). In addition we can reverse the {x, y}-split-
components, which is quite intuitive because that
won’t affect the planarity condition in a planar
case and create a new embedding. If {x, y} is not
a seperation pair and {s, t} is also non, we can

reverse the {s, t}-component.

As already mentioned before the algorithm rep-
resents the possible operations we can execute by
adding parentheses or brackets to the adjacency
sublists. To add these we divide the algorithm by
three operations a,b and c. Not going into detail
here, because the paper just presents the idea of
gathering all embeddings. Further the adjacency
lists for each vertex can be substructured in sub-
lists L(u), containing the descendants of each child
of A(x) [5].

• permutation of {x, y}- split components
and the edge (x,y)

x

a b

y

c

x

a b

y

c

• reverse the {x, y} split-components

x

a b

y

c

x

a d

y

c

The displayed examples show the possible opera-
tions, which create new embeddings by swapping
parts of the graph or reversing a component.

A sublist of an adjacency list A(x) is labelled
by L(u1), ..., L(un) for u1, ..., un to be the children
of x. By applying the parentheses for a possible
permutation of the sublists and brackets for a pos-
sible reversion of the sublist, there is a new formal
structured list, which represent the possible oper-
ations [5].

The algorithm Generate structures the graph
into different parts to signalize which we can swap
and which we can reverse. In the end it creates a
modified set of adjacency lists which represent all
the possible embeddings of a graph.

9

4 Conclusion

Finally after presenting a few algorithms regard-
ing planarity and planar embeddings I am coming
to a conclusion about my seminartopic. The first
algorithm Planar uses a vertex addition method
to expand a special subgraph in each step. Paral-
lely the reduction step makes sure that the graph
is planar everytime. In linear time the algorithm
checks if the input graph is planar.

The next algorithm Embed works in two phases.
The first phase modifies the algorithm Planar
slightly. In each step we store an adjacency list
of the relevant vertex. To get the right directions
of the adjacency lists, the algorithm traces the re-
versions made in the reduction steps with a special
node. After adding all vertices the adjacency lists
will be checked and if needed reversed. The Em-
bed algorithm creates an upward embedding and
runs aswell in linear time. The second phase re-
cursively casts an DFS to complete the upward
embedding. Together both algorithms need linear
time and create a planar embedding.

Both these algorithms work with the special
data structure pq-tree presented in this paper in
order to achieve linear runtime.

To show another possibility to create a planar
embedding, I presented an algorithm working with
a DFS-tree and a cyclic list. It uses an idea closer
to the first planar testing algorithm of Tarjan and
Hopcroft and runs in linear time [7].

The last algorithm Generate divides the graph
into different parts to signalize which edges or
parts we can reverse or swap. By adding paren-
theses and brackets to the adjacency lists of the
graph, we create a formal structure to represent
all possible embeddings.

References

[1] Kenneth Appel and Wolfgang Haken. Every
planar map is four colorable. Bulletin of the
American mathematical Society, 82(5):711–
712, 1976.

[2] Kellogg S. Booth and George S. Lueker. Test-
ing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree al-
gorithms. Journal of Computer and System
Sciences, 13(3):335 – 379, 1976.

[3] John M Boyer and Wendy J Myrvold. Stop
minding your p’s and q’s: A simplified o (n)
planar embedding algorithm. In SODA, vol-
ume 99, pages 140–146, 1999.

[4] Read Ronald C. and Corneil Derek G. The
graph isomorphism disease. Journal of Graph
Theory, 1(4):339–363.

[5] Norishige Chiba, Takao Nishizeki, Shigenobu
Abe, and Takao Ozawa. A linear algorithm
for embedding planar graphs using pq-trees.
Journal of Computer and System Sciences,
30(1):54 – 76, 1985.

[6] Shimon Even and Robert Endre Tarjan. Com-
puting an st-numbering. Theoretical Computer
Science, 2(3):339 – 344, 1976.

[7] John Hopcroft and Robert Tarjan. Efficient
planarity testing. J. ACM, 21(4):549–568, Oc-
tober 1974.

[8] Vı́t Jeĺınek, Jan Kratochv́ıl, and Ignaz Rut-
ter. A kuratowski-type theorem for planarity
of partially embedded graphs. Computational
Geometry, 46(4):466 – 492, 2013. 27th An-
nual Symposium on Computational Geometry
(SoCG 2011).

[9] Casimir Kuratowski. Sur le problème des
courbes gauches en topologie. Fundamenta
Mathematicae, 15(1):271–283, 1930.

10

