
Embedding Planar Graphs on a Grid
Seminar “Algorithms on Sparse Graphs”, Summer 2018

Supervisors: Jan Dreier, Philipp Kuinke

Pascal Hein

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Fáry’s Theorem 2
2.2 Triangulated Planar Graphs . . 2
2.3 Canonical Ordering 3

3 Related Results 3

4 Algorithm 4
4.1 Description of the Embedding . 4
4.2 Adding the next Vertex 5

5 Analysis & Improvement 6
5.1 Prerequisites 6
5.2 Binary Tree and Offsets 6
5.3 Final Algorithm 7
5.4 Correctness 7
5.5 Time Complexity 9

6 Conclusion 9

1 Introduction

Graphs, due to their simple and generic
mathematical formulation, have many applic-
ations both as models of the real world and
as purely theoretical constructs. It is com-
monplace to represent dependency relation-
ships, transition diagrams, social connections,
maps and circuits as graphs before applying
mathematical theorems or algorithms to a
problem.

Usually these algorithms are designed for
space or runtime efficiency, which also influ-
ences the choice of input format. Common
representations are adjacency matrices, edge
sets, or other data structures specific to the
task in question. However, none of these
formats is intuitively accessible to humans
wanting to understand the graph’s structure,
visualize the workings of an algorithm, or
communicate about certain features. Fur-
thermore, if a problem has been modelled

and solved using graph theory, the output
should be formatted in a way so that experts
of other domains can understand and apply
the results. This is why graph visualization
is a critical and diverse topic: only if we
are able to draw graphs are we able to
talk about graphs and to make observations
or understand algorithms on them, which
makes visualization necessary to use graphs
effectively.

However, there are many criteria for what
makes a good drawing of a graph: Common
requirements are to impose restrictions on
the form of edges (e.g. straight or parallel
to the coordinate axes) or the location of
vertices (e.g. for maps corresponding to the
real world, chronological ordering in a family
tree or flowchart, or grouping vertices by a
certain measure of distance). Furthermore
there is a wide range of layout optimization
criteria including total size of a bounding
box (given a fixed minimum resolution), the
number of edge crossings, or various types of
regular patterns and symmetries [1].

Obviously, the choice of design is, first
and foremost, determined by the purpose
of the drawing, and the domain it is being
applied to. However, it is also influenced by
constraints on the graphs we have to draw:
While certain optimization problems might
be hard to solve in general (e.g. the required
number of edge crossings is NP-complete [2]),
they could be feasible if the input is known to
be restricted to a certain subset of all graphs.

Two of the most commonly desired prop-
erties are having few edge crossings and
low curvature, due to easier perception by
users [3]. The algorithm by Marek Chrobak
and Thomas H Payne [4] that will be dis-
cussed here optimizes these characteristics
for the class of planar graphs, drawing them
with straight edges and without edge cross-
ings. In this paper, we intend to give an
overview over their algorithm, elaborate on
several points, and place it into context by

1

Embedding Planar Graphs on the Grid 2 Preliminaries

considering related work. In section 2, we
review relevant definitions and theorems in
graph theory that will be prerequisite to the
algorithm. Section 3 will introduce both
prior and subsequent publications covering
the topic, before we present the main idea of
the algorithm in section 4. Finally, section 5
is concerned with improving the runtime, and
proving correctness as well as the claimed
bound on the runtime.

2 Preliminaries

We begin by defining the terms used in
this report and stating necessary theorems.
Throughout the remainder of our paper, we
identify a graph G = (V,E) with the set of
its vertices, V , and a set of undirected edges,
E ⊆ {{x, y} | x, y ∈ V, x ̸= y}.

The output of a drawing algorithm should
be an embedding of the graph G = (V,E),
i.e. a map assigning to each vertex v ∈ V
a point (x(v), y(v)) ∈ R2, and to each edge
e = {v1, v2} ∈ E a simple curve connecting
the images of its endpoints; an embedding is a
straight-line embedding if the images of edges
are line segments, in which case it is uniquely
determined by the positions assigned to the
vertices.

Recall that a graph is called planar if there
exists an embedding such that any two arcs
may only intersect at their endpoints. In this
case, we may speak of faces which are delin-
eated by edges, and refer to the unbounded
section of the plane as the exterior face of
G. The boundary of G refers to the edges
adjacent to this exterior face. Lastly, a graph
is called biconnected if it remains connected
even after removing any single vertex.

Due to Euler’s well-known formula on the
number of vertices, faces and edges in planar
graphs, |V |+ |F |− |E| = 2, and the fact that
any face is bounded by at least three edges
belonging to two faces each (2 |E| ≥ 3 |F |),
we obtain |E| ≤ 3 |V | − 6; in particular,
the number of edges is at most linear in the
number of vertices which will henceforth be
designated by n.

2.1 Fáry’s Theorem

Since planar graphs are defined in terms of
arbitrary embeddings, it is not obvious that it
should be possible to draw them without edge
crossings when restricted to straight lines.
Thus, the first result related to the problem
at hand is the following theorem implying
that the desired type of drawing always exists
(albeit on arbitrarily large grids).

Proposition 1 [5]. Any planar graph has a
straight-line embedding.

This embedding may be obtained induct-
ively by removing a vertex v ∈ V with degree
less than 6, embedding the remaining vertices
such that the face containing v is not the
exterior face, and reinserting v with straight
edges.

2.2 Triangulated Planar Graphs

The algorithm we are about to present will
rely on graphs being internally triangulated.
This refers to the case when each face, except
possibly the exterior one, is bounded by
exactly three edges. An internally triangu-
lated graph where the exterior face also is a
triangle is called triangulated or maximally
planar. This definition leads us to the
following observation.

Proposition 2. A planar graph G is trian-
gulated if and only if no edge can be added to
obtain a planar graph.

Proof. If G is not triangulated, suppose that
v1, v2, v3, v4 appear in this order on the
boundary of a non-triangular face. If one of
the diagonals v1v3 and v2v4 exists, it divides
the outside into two regions each containing
one of the other two vertices. Hence the other
diagonal cannot exist and we can add it inside
the face.

The converse is clear: any edge connecting
vertices of a triangle must be a side, hence it
already exists in G.

In particular, proposition 2 implies that
we are able to obtain a triangulated graph
from any planar graph by iteratively adding

2

Embedding Planar Graphs on the Grid 3 Related Results

edges to non-triangular faces. We can thus
work exclusively on triangulated graphs; any
algorithm can be applied to non-triangulated
graphs by adding a linear amount of missing
edges and removing them from the embed-
ding afterwards.

2.3 Canonical Ordering

We will now state the theorem that is fun-
damental to the workings of the presented
algorithm, because it provides an order in
which vertices may be iteratively inserted.

Theorem 1 [6]. Let G = (V,E) be a triangu-
lated planar graph. Then G has a canonical
ordering, i.e. an ordering v1, . . . , vn of V
such that v1, v2, vn bounds its exterior face
and, for each k = 3, . . . , n− 1:

1. the subgraph Gk induced by v1, . . . , vk is
biconnected and internally triangulated,

2. the boundary of its exterior face contains
the edge v1v2,

3. vk+1 is in the exterior face of Gk and its
neighbours in Gk are consecutive on the
boundary excluding v1v2.

Proof (adapted from [1]). Let v1, v2, vn be
the vertices on the boundary of the triangular
outer face of Gn in any order. The first two
conditions are clearly satisfied, so we may
induct backwards on n.

Now assume that Gk+1 satisfies the condi-
tions for some k = 3, . . . , n − 1; we consider
chords, i.e. edges between vertices of Gk+1’s
exterior boundary B = (v1, v2, . . . , v1) which
are not adjacent to the exterior face. If there
is any chord at all, pick c = {x, y} such
that the path P = (x, . . . , v1, v2, . . . , y) ⊊ B
(along the boundary and containing v1v2)
is as long as possible. Vertices on B \ P
cannot be incident to any chords because
these would intersect c or induce a longer
path containing v1v2. Therefore, it is always
possible to choose vk+1 /∈ {v1, v2} such that it
is not incident to any chord. We claim that
Gk obtained by removing vk+1 satisfies the
conditions.

Clearly, vk+1 must be on the exterior face
of Gk since it is on the boundary of Gk+1;
furthermore the boundary of Gk also contains
v1v2 because vk+1 /∈ {v1, v2}. Gk is internally
triangulated because Gk+1 was, and none of
the edges or faces inside the boundary of
Gk have changed. The edges from vk+1 to
its neighbours cannot cover v1v2 since this
edge is on the outside of Gk+1, and any
vertex between two neighbours of vk+1 in Gk

must also be a neighbour because Gk+1 is
internally triangulated.

Assume that Gk is not biconnected and
has a vertex vj such that removing vj would
disconnect Gk. Clearly, vj must be on the
boundary of Gk because otherwise removing
it would also disconnect the biconnected
graph Gk+1. In Gk+1 \ {vj}, the only
connection between the components of Gk \
{vj} is via vk+1. Together with vk+1 and
vj , the connecting edges incident to vk+1

induce a cycle with at least four vertices
as shown in figure 1, so the (non-boundary)
edge vk+1vj must exist on its inside due to
triangulation, and cannot exist on its outside.
Since the neighbours of vk+1 are consecutive,
no edge can “hide” vj and vk+1vj is a chord,
contradicting the choice of vk+1.

The computation of a canonical ordering
will later be the first step of the algorithm;
it can be performed efficiently in a way
resembling the proof of the previous theorem
[1], or using an algorithm by Kant [7].

3 Related Results

In this section, we will give an overview
over algorithms producing straight-line em-
beddings of planar graphs.

Fáry’s Theorem stated in section 2 guar-
antees that straight-line embeddings exists;
however, early drawing algorithms [8, 9] can
lead to dense regions that may cause prob-
lems due to finite precision in the implement-
ation and limited resolution when displaying
the result (e.g. on a computer screen).

Thus, Rosenstiehl and Tarjan’s proposed
solution is “a straight-line embedding such

3

Embedding Planar Graphs on the Grid 4 Algorithm

Gk Gk

vk+1

vj

e f

Figure 1: Proof of biconnectedness: The edge e does not exist, so f must be present; then
dashed lines cannot exist and f is a chord

that the vertices map to integer lattice points
with coordinates bounded by nk for some
constant k” [10], the existence of which was
proved by de Fraysseix et al. [6]. Their al-
gorithm has a runtime of O(n log n); however,
they “suspect that a linear time algorithm
exists”.

The algorithm by Chrobak and Payne [4]
which will be presented below is based on
the method used by de Fraysseix et al. [6].
However, the computation of coordinates
is different, leading to significantly simpler
steps and a better runtime complexity, indeed
achieving linear time as suggested by de
Fraysseix et al. They also indicate that it
is possible to reduce the grid size to (n−2)×
(n− 2) which will be pointed out later.

Schnyder [11] gave a different linear time
algorithm for drawing planar graphs on a
(n− 2)× (n− 2) grid; however Chrobak and
Payne claim that “[their] approach is easier
to implement, and the resulting embeddings
tend to be more aesthetic” [4].

Nevertheless, the algorithms by de Frays-
seix et al. [6] as well as Chrobak and
Payne [4] have a significant drawback due to
the way they produce the embedding based
on triangulated graphs. Even though the
original input may have been very sparse, the
algorithms will add edges until the graph is
triangulated and remove them after the ver-
tices’ positions have been determined. This
can result in unaesthetic drawings if the
edge density varies significantly, and it can
produce complicated shapes for the faces of
the graph. A solution is provided by convex
drawings guaranteeing that every face will be
embedded as a convex polygon. Tutte [8]
gave a barycentric method for constructing

these for 3-connected graphs, and algorithms
by Chiba et al. [9, 12] produce these drawings
in linear time whenever this task is possible.

A method for convex graph drawings on
the grid with linear time complexity has also
been presented by Chrobak and Kant [13]; it
has similarities with the algorithm discussed
below but uses sets forming a canonical
decomposition instead of adding one vertex
at a time.

4 Algorithm
What follows is a description of the general
idea of iteratively shifting vertices, and a
high-level view of the algorithm presented by
Chrobak and Payne [4].

4.1 Description of the Embedding

We start with a triangulated planar graph
G = (V,E); assume that a canonical ordering
v1, . . . , vn of its vertices is given. Beginning
by embedding v1 at (0, 0), v2 at (2, 0), and v3
at (1, 1), we add one vertex vk+1 at a time to
the embedding of Gk until we have embedded
Gn = G. We will denote by x(v) and y(v)
the x- and y-coordinate, respectively, of the
image of v under the embedding, and define
the contour of Gk to be the vertices v1 =
w1, . . . , wm = v2 along the boundary of Gk’s
exterior face excluding the edge v1v2.

We will maintain the following invari-
ants [4]:

1. In Gk, v1 and v2 are embedded at (0, 0)
and (2k − 4, 0), respectively.

2. The vertices along the contour of Gk are
assigned ascending x-coordinates.

4

Embedding Planar Graphs on the Grid 4 Algorithm

wp wq

vk+1

Gk

Figure 2: Shifting vertices to create gaps

3. The edges along the contour of Gk have
slope ±1.

4.2 Adding the next Vertex

Assume that we have successfully embedded
Gk into the grid such that its contour is
v1 = w1, . . . , wm = v2. We now consider the
problem of placing vk+1; by the properties of
a canonical embedding, it has at least two
neighbours in Gk (since Gk+1 is biconnected)
and they form a subsequence wp, . . . , wq of
the contour with 1 ≤ p < q ≤ m.

If we were to simply add vk+1 such that the
embedding of wpvk+1 has slope +1 and that
of vk+1wq has slope −1, these edges might
overlap with wpwp+1 or wq−1wq if they have
the same slope. This problem is solved by
first creating gaps, i.e. by shifting every wi

with p < i < q to the right by 1, and every wi

with q ≤ i ≤ m to the right by 2 as shown in
figure 2. Now, the slope of the (imaginary)
edges wpwj and wjwq for p < j < q is
strictly between −1 and +1, so the slope
of wjvk+1 has absolute value strictly greater
than 1. Therefore, the embeddings of edges
incident to vk+1 can neither intersect each
other nor any already existing edge, except
at their endpoints.

However, this only holds as long as we
do not move any of the concerned vertices.
For instance, shifting vk+1 to the right by
1 in any further step could result in the
edges wp+1wp+2 and wp+1vk+1 both having
slope +1. We therefore need to store the
information that vk+1 and wp+1, . . . , wq−1

should never be moved independently. This
is accomplished using sets L(v) ⊇ {v} (the
vertices moved with v) such that we only

ever move a set L(v) as a whole: they are
therefore computed recursively as L(vk+1) =
{v} ∪

∪q−1
i=p+1 L(wi) whenever vk+1 covers

wp+1, . . . , wq−1 on the contour of Gk, in order
to prevent the covered neighbours of vk+1

from moving relative to vk+1. We have to
take the union of the sets L(wi) since all
vertices moving with wi should, of course,
also move with vk+1 by transitivity.

It is easily observed that the embeddings
of wpvk+1 and vk+1wq have the correct slope
if and only if the coordinates of vk+1 are
computed as

x(vk+1) =
1

2
(x(wq) + y(wq)

+x(wp)− y(wp)),

y(vk+1) =
1

2
(x(wq) + y(wq)

−x(wp) + y(wp)).

(1)

Assembling all the steps outlined above,
listing 1 shows the pseudocode for the draw-
ing algorithm.

Note that the graph is embedded in a (2n−
4)×(n−2) grid because v2 starts out at (2, 0)
in G3 and is moved by 2 in each step until
we have reached Gn; v1 always remains at
(0, 0). The third point on the convex hull
is vn which must be placed at (n − 2, n − 2)
because the slopes of v1vn and vnv2 are 1 and
−1 respectively.

It is possible to modify this embedding
by creating only one gap between wp and
wp+1. The new vertex vk+1 will be placed
so that x(vk+1) = x(wp)+1, and the slope of
vk+1wq is −1. While downward edges along
the contour still have slope −1, upward edges
may then have any slope in [0,∞). The result
is an asymmetric drawing on a grid of size
(n − 2) × (n − 2); Chrobak and Payne cite a
private communication with Schnyder [4].

De Fraysseix et al. [6] also give an example
of nested triangles requiring a grid size of(
2
3n− 1

)
×
(
2
3n− 1

)
as shown in figure 3; the

quadratic grid size is therefore asymptotically
optimal while it is unclear whether it is
possible to use grids of size at most cn2+O(n)
for any c < 1.

5

Embedding Planar Graphs on the Grid 5 Analysis & Improvement

Listing 1 Pseudocode for high-level drawing algorithm
procedure Draw(G: graph, v1, . . . , vn: canonical ordering)

Embed v1 7→ (0, 0), v2 7→ (2, 0), v3 7→ (1, 1)
Set L(v1) = {v1} , L(v2) = {v2} , L(v3) = {v3}
for 3 ≤ k < n do

// Let v1 = w1, . . . , wm = v2 be the contour of Gk

// Let wp, . . . , wq be the neighbours of vk+1 in Gk such that 1 ≤ p < q ≤ m
Shift L(wp+1), . . . , L(wq−1) by 1
Shift L(wq), . . . , L(wm) by 2
Embed vk+1 at coordinates in (1)
Set L(vk+1) = {vk+1} ∪

∪q−1
i=p+1 L(wi)

end for
end procedure

Figure 3: Graph class requiring a grid size of(
2
3n− 1

)
×
(
2
3n− 1

)
5 Analysis & Improvement

5.1 Prerequisites

We first consider the problem of triangulating
the graph and obtaining a canonical ordering.
Kant [7] provides an algorithm running in
linear time that, given a planar embedding of
a graph G, triangulates G and computes a ca-
nonical ordering at the same time. However,
we can embed a graph using the Hopcroft-
Tarjan planarity testing algorithm [14] in
linear time. After completion of the drawing
algorithm, we can redraw all edges in the
graph G using only the positions of the
vertices since their number is linear in the
number of vertices, thus “removing” those
edges added only for triangulation.

5.2 Binary Tree and Offsets

We are therefore interested in a linear-time
implementation of the procedure in listing 1;
however, in the given version we have to
move a large fraction of vertices in every

iteration which leads to a quadratic runtime.
Noticing that these shifts are the deciding
factor for the complexity, we intend to store
the information about offsets in one location
only instead of in every vertex.

Note that the sets L(w1), . . . , L(wm) form
a partition of all vertices v1, . . . , vk if
w1, . . . , wm is the contour of Gk (because
L(w) is merged into a new contour vertex’s
set whenever w is covered), and each of them
only moves as a whole. We can therefore shift
each L(wi) with a single offset ∆x(wi).

We will further represent the sets L(wi) as
a single binary tree with root v1, where the
left child of a vertex vk is the leftmost vertex
on the contour of Gk−1 that was covered
by adding vk (i.e. vk’s second neighbour
from the left, if there are more than two
neighbours), and the right child is the right
neighbour on the contour of the current
graph, or the last graph before vk was covered
(if this neighbour was covered at the same
time). Notice that, at any step, the bound-
ary of Gk is obtained by starting from v1
and following the sequence of right children.
Furthermore the set L(wi) corresponds to wi

together with its entire left subtree.
Each vertex v of this binary tree will

store an x-offset ∆x(v) and the y-coordinate
y(v). This x-offset is measured relative to
the x-coordinate of its parent, which is the
left neighbour along the contour of the last
graph Gk before v was covered (i.e. v is
on the contour of Gk but not of Gk+1), or

6

Embedding Planar Graphs on the Grid 5 Analysis & Improvement

the covering vertex vk+1 itself if v was the
leftmost covered vertex.

We can now perform the shift operations
of

∪q−1
i=p+1 L(wi) by 1 and of

∪m
i=q L(wi)

by 2 simply by increasing ∆x(wp+1) and
∆x(wq) by 1 each, because this also affects
all successors along the contour and their
corresponding sets L(wi).

When adding a new vertex vk+1, we need
to update the binary tree to maintain the
structure described above. This is achieved
by making vk+1 the right child of wp, and wq

the right child of vk+1 as illustrated in figure
4. If there were any vertices wp+1, . . . , wq−1

that have now been covered, the first of
these should be made the left child of vk+1

since it now belongs to L(vk+1), while the
last covered vertex’s right child should no
longer be wq which remains on the contour.
Care must be taken whenever the parent of
a vertex changes because the offset needs to
be recomputed relative to the new parent.

It remains to be shown that we can com-
pute the location of vk+1 exclusively given
the information stored in this tree. This is
achieved by defining ∆x = x(wq)−x(wp) and
rewriting the formula in (1) as

∆x(vk+1) = x(vk+1)− x(wp)

=
1

2
(y(wq)− y(wp) + ∆x) ,

y(vk+1) =
1

2
(y(wq) + y(wp) + ∆x) .

(2)

Notice that ∆x = ∆x(wp+1)+ · · ·+∆x(wq)
in Gk. The number of terms is less than
the degree of vk+1; since the total degree of
the graph is linear in |V |, the summations in
all the iterations together require only linear
time.

In the end, the x-coordinates of all vertices
are computed by recursively summing up the
offsets on the path in the binary tree starting
from v1, using a simple procedure shown in
listing 2.

5.3 Final Algorithm

We can now put together all the computa-
tions presented above to describe the com-
plete algorithm, as displayed in listing 3.

5.4 Correctness

As argued above, the modified algorithm in
listing 3 computes exactly the same vertex
positions as the pseudocode in listing 1 be-
cause the sum of offsets on the path in the
tree always corresponds to the x-coordinate
of any vertex. We therefore only need to
prove that the algorithm in listing 1 produces
a straight-line embedding of its input graph
on a (2n− 4)× (n− 2) grid.

In order to obtain such an embedding,
it is necessary that the coordinates in (1)
are integers, which is implied by following
theorem.

Theorem 2. For 3 ≤ k ≤ n, the coordinates
x(wi) and y(wi) of each vertex wi on the
boundary of Gk are integers with even sum.

Proof. We proceed by induction, where the
base case k = 3 is satisfied by the choice of
embedding for G3.

Now assume that the theorem holds for k
and we are embedding vk+1. Contour vertices
up to and including wp are not moved at
all, while those starting from wq are moved
by 2. Therefore, all vertices except vk+1

that belong to the contour of Gk+1 still have
integer coordinates with even sum.

Since x(wp) and y(wp) are integers with
even sum, their difference must also be even.
Applying this to equation (1), 2x(vk+1) is the
sum of two even numbers and 2y(vk+1) is
the difference of two even numbers, so the
coordinates of vk+1 are both integers. Their
sum is x(vk+1)+y(vk+1) = x(wq)+y(wq) and
therefore even.

We can observe that in each step, the
contour vertices w1, . . . , wm of the previous
graph Gk and their corresponding sets L(wi)
are shifted by a sequence of nondecreasing
integers before adding the new vertex. Their
coordinates remain integers; however we need
to prove that these shifts do not introduce
any new edge crossings.

Theorem 3 [6]. Let Gk be a straight-line
embedded graph that has been obtained after a
certain number of iterations of the algorithm.
If its contour is v1 = w1, . . . , wm = v2 and

7

Embedding Planar Graphs on the Grid 5 Analysis & Improvement

contour

w1 = v1

w2

wp

wp+1

wp+2

wq

wm = v2

insert vk+1

contour

w1 = v1

w2

wp

wp+1

wp+2

wq

wm = v2

vk

Figure 4: Inserting a new vertex into the binary tree

Listing 2 Offset accumulation
procedure AccumulateOffsets(v: vertex, x(p): x-coordinate of parent)

x(v)← x(p) + ∆x(v)
if v.left ̸= nil then

AccumulateOffsets(v.left, x(v))
end if
if v.right ̸= nil then

AccumulateOffsets(v.right, x(v))
end if

end procedure

ρ1 ≤ · · · ≤ ρm is a nondecreasing sequence
of integers, then moving each set L(wi), 1 ≤
i ≤ m, by ρi to the right does not produce any
edge crossings.
Proof. We induct on k; clearly, in the triangle
G3, we can shift the vertices as desired.

Now assume that the statement holds for
Gk, for some fixed k = 3, . . . , n − 1, and we
intend to prove it for Gk+1. As before, let the
vertices covered by vk+1 be wp, . . . , wq.

We are given a sequence satisfying ρ1 ≤
· · · ≤ ρp ≤ ρ ≤ ρq ≤ · · · ≤ ρm by which
the contour w1, . . . , wp, vk+1, wq, . . . , wm of
Gk+1 together with the sets L(wi) should be
shifted.

Due to the way the algorithm constructs an
embedding of Gk+1, this is equivalent to first
shifting each set L(wi) for the contour ver-
tices w1, . . . , wp, wp+1, . . . , wq−1, wq, . . . , wm

by
0, . . . , 0︸ ︷︷ ︸
1≤i≤p

, 1, . . . , 1︸ ︷︷ ︸
p+1≤i≤q−1

, 2, . . . , 2︸ ︷︷ ︸
q≤i≤m

,

before applying the shifts

ρ1, . . . , ρp, ρ, . . . , ρ︸ ︷︷ ︸
q−p−1 times

, ρq, . . . , ρm

to the sets L(wi), because L(vk+1)\{vk+1} =
L(wp+1) ∪ · · · ∪ L(wq−1).

Therefore, the sequence of total shifts ap-
plied to the contour of Gk is given by

ρ′i =

ρi, 1 ≤ i ≤ p

ρ+ 1, p+ 1 ≤ i ≤ q − 1

ρi + 2, q ≤ i ≤ m.

Since ρ′1 ≤ · · · ≤ ρ′m, by our induction hy-
pothesis Gk does not contain any edge cross-
ings after applying these shifts. However we
have argued above that placing vk+1 cannot
introduce any edge crossings, and vk+1 does
not move relative to any of wp+1, . . . , wq−1.
Widening the gap between wp and wp+1 or
wq−1 and wq clearly cannot lead to edge
crossings involving vk+1 either.

Hence, the resulting graph is still straight-
line embedded. In particular, every Gk as
obtained from the algorithm is planar, and
the algorithm correctly produces a straight-
line embedding of Gn = G as claimed.

We therefore obtain a straight-line embed-
ding of Gn = G on the grid; this concludes
the proof of correctness for the algorithm.

8

Embedding Planar Graphs on the Grid 6 Conclusion

Listing 3 Complete drawing algorithm
procedure Draw(G: graph) // Computes a straight-line embedding of G

Embed G into the plane // Hopcroft-Tarjan algorithm [14]
Triangulate G and compute a canonical ordering v1, . . . , vn // Kant’s algorithm [7]
// Initialize binary tree, embedding of G3

v1.right← v3, v3.right = v2, v2.right← nil
v1.left← nil, v2.left← nil, v3.left← nil
∆x(v1)← 0, ∆x(v3)← 1, ∆x(v2)← 1
y(v1)← 0, y(v3)← 1, y(v2)← 0
for 3 ≤ k < n do

// Let wp, . . . , wq be the neighbours of vk+1 in Gk

∆x(wp+1)← ∆x(wp+1) + 1 // Create gaps next to wp and wq

∆x(wq)← ∆x(wq) + 1
∆x← ∆x(wp+1) + · · ·+∆x(wq)
∆x(vk+1)← 1

2 (y(wq)− y(wp) + ∆x) // Compute location using equation (2)
y(vk+1)← 1

2 (y(wq) + y(wp) + ∆x)
wp.right← vk+1

vk+1.right← wq

∆x(wq)← ∆x−∆x(vk+1) // Update offset from new parent for wq

if p+ 1 < q then // Handle covered vertices
vk+1.left← wp+1

∆x(wp+1)← ∆x(wp+1)−∆x(vk+1)
wq−1.right← nil

else
vk+1.left← nil

end if
end for
AccumulateOffsets(v1, 0)

end procedure

5.5 Time Complexity

At the beginning of this section we already
referred to related publications proving linear
bounds on the runtime of graph embedding
and triangulation as well as the computation
of a canonical ordering.

Notice that each iteration in listing 3 has
constant complexity except for the computa-
tion of the sum ∆x. However, we argued
that the runtime of these sums aggregated
over all iterations is linear in the number of
edges, which again is linear in the number of
vertices. Furthermore, the procedure Accu-
mulateOffsets runs in linear time because
it is called exactly once for every vertex of
the graph. Edges added for the triangulation
can be removed after computing all positions
because their total number is linear in n.

Hence we obtain the claimed result: The
runtime of the entire drawing algorithm is
linear in the number of vertices, which is
clearly optimal. We further note that the
algorithm also has linear space complexity
because a constant amount of memory is
required for each vertex.

6 Conclusion

Graph visualization is an equally important
and diverse topic that has many applications.
There are a number of desirable and concur-
rent properties, many of which are hard to
optimize in general but tractable for planar
graphs. Of special interest are algorithms
that minimize crossings and curvature of
edges.

9

Embedding Planar Graphs on the Grid References

In this paper, we have given an overview
over results related to such embeddings. In
particular, we presented and elaborated on
an algorithm published by Chrobak and
Payne that produces a straight-line embed-
ding of a planar graph on a small coordinate
grid, before proving its correctness and a
bound on its time complexity. A suitable,
“canonical” ordering of the vertices is used
as the basis for an iterative approach that
produces planar straight-line embeddings by
shifting vertices.

By means of an aptly chosen representation
of the dependencies among vertex coordin-
ates and an efficient structure for performing
shifts, only linear time is required.

Even though other algorithms exist produ-
cing similar drawings, some of them guaran-
teeing convexity or requiring a smaller grid,
the presented algorithm is notable for its
efficiency and simplicity.

References
[1] Tamara Mchedlidze and Martin Nöllen-

burg. Lecture on Algorithms for Visu-
alization of Graphs. 2014. url: i11www.
iti.kit.edu/teaching/winter2014/
graphvis/index.

[2] Michael R Garey and David S Johnson.
“Crossing number is NP-complete”. In:
SIAM Journal on Algebraic Discrete
Methods 4.3 (1983), pp. 312–316.

[3] Chris Bennett et al. “The aesthetics
of graph visualization”. In: Computa-
tional Aesthetics (2007), pp. 57–64.

[4] Marek Chrobak and Thomas H Payne.
“A linear-time algorithm for drawing a
planar graph on a grid”. In: Inform-
ation Processing Letters 54.4 (1995),
pp. 241–246.

[5] Istvan Fáry. “On straight line repres-
entation of planar graphs”. In: Acta
Scientiarium Mathematicarum Szeged
11 (1948), pp. 229–233.

[6] Hubert de Fraysseix, János Pach and
Richard Pollack. “How to draw a planar
graph on a grid”. In: Combinatorica
10.1 (1990), pp. 41–51.

[7] Goossen Kant. “Algorithms for draw-
ing planar graphs”. PhD thesis. 1993.

[8] William Thomas Tutte. “How to draw
a graph”. In: Proceedings of the Lon-
don Mathematical Society 3.1 (1963),
pp. 743–767.

[9] Norishige Chiba, Tadashi Yamanou-
chi and Takao Nishizeki. “Linear al-
gorithms for convex drawings of planar
graphs”. In: Progress in graph theory
(1984), pp. 153–173.

[10] Pierre Rosenstiehl and Robert E Tar-
jan. “Rectilinear planar layouts and bi-
polar orientations of planar graphs”. In:
Discrete & Computational Geometry
1.4 (1986), pp. 343–353.

[11] Walter Schnyder. “Embedding planar
graphs on the grid”. In: Proceedings
of the first annual ACM-SIAM sym-
posium on Discrete algorithms. Society
for Industrial and Applied Mathemat-
ics. 1990, pp. 138–148.

[12] Norishige Chiba, Kazunori Onoguchi
and Takao Nishizeki. “Drawing plane
graphs nicely”. In: Acta Informatica
22.2 (1985), pp. 187–201.

[13] Marek Chrobak and Goos Kant. “Con-
vex grid drawings of 3-connected planar
graphs”. In: International Journal of
Computational Geometry & Applica-
tions 7.03 (1997), pp. 211–223.

[14] John Hopcroft and Robert E Tar-
jan. “Efficient planarity testing”. In:
Journal of the ACM (JACM) 21.4
(1974), pp. 549–568.

10

