Planarity Testing —

The efficient way?

Seminar: Algorithms on Sparse Graphs

Kevin Behrens
RWTH Aachen University
kevin.behrens @rwth-aachen.de

Abstract—Nearly 50 years after the publication of the
first algorithm for planarity testing of graphs in linear time
the problem is still of interest due to the wide application
of sparse graphs as a model for real phenomena.

This paper revisits the algorithm for efficient planarity
testing of Hopcroft and Tarjan and will discuss the runtime
of this algorithm using some special examples. Also we try
to embed the algorithm in the research universe which
formed before and after the publication from 1974. Our
objective is to give an easier approach of explanation of
the Hopcroft and Tarjan planarity testing algorithm while
staying as near as possible at the original implementation.

CONTENTS
I Preliminaries 1
I-A The Problem 1
I-B Motivation 1
I-C Notation 2
I-D Previous Research 2
I Algorithm 3
II-A Structuring 4
II-B Pathfinding 5
II-C Embedding 5
III Analysis 7
III-A Initalization Phase 7
III-B Working Phase 7
IV Discussion 7
IV-A Conclusion 7
IV-B Current Development 8
References 9

I. PRELIMINARIES
A. The Problem

Graph theoretic problems are an interesting topic
regarding theoretical computer science. Since the first

characterization concerning planar graphs by the mathe-
matician Euler in 1758 no one could forecast the usage
of graphs in science. It is also unlikely that anyone
knew computers would be able to solve complex graph
problems or that they need efficient algorithms for this
task. Nowadays this is a particular important topic which
makes it a special achievement that Hopcroft and Tarjan
presented a linear time algorithm already in 1974. This
happened at a time where computers' have been huge
room-filling black boxes with just 512 kilobytes of main
memory in total [1].

But what defines a planar graph? In colloquial terms,
a graph is planar if someone is able to draw the graph
on a piece of paper (which is in the plane) while making
sure that no edge crosses another [2].

The aim of this paper is to give an easier and more
application-oriented explanation of the planarity testing
algorithm designed by Hopcroft and Tarjan [2]. We
also try to stick as near as possible to the original
implementation. As efficiency is key to a good algorithm
we will not omit a clear runtime analysis of the algorithm
at the end of the paper.

This paper is organized as follows. The rest of this
section presents the importance of the problem, as well
as our notation and previous research. Section II outlines
the algorithm of Hopcroft and Tarjan and gives some
examples on how it works aswell as emphasizing the
advantages of specific data representations. Section III
examines the runtime of the different steps. Section IV
concludes with a discussion and a small outlook to
current research regarding this problem.

B. Motivation

Planar graphs are used in many different applications
domains because of their superior properties.

One example for the usage of planar graphs is the
planning of cities and streets. The place for example for
new motorway intersections is often limited and bridges

'The authors used a IBM 360/37 as a testing device.

are quite an expensive solution to prevent overlappings.
Engineers are aiming to create a mostly planar design of
an intersection to reduce both costs and complexity for
drivers [3].

The design of circuit boards including the placement
of conducting paths also requires planar graphs. A
crossing of different conducting paths would not only
destroy the intended functionality in most cases, it would
also pose the risk of a short circuit. Knowing wether a
circuit can be embedded in the plane [2] is therefore
a question of concern especially when circuit boards
are getting smaller and smaller during the trend of
upcoming Internet of Things devices which refers to
enhancing everyday technology with connectivity and
smart functionality.

In addition to this, chemistry provides another inter-
esting application example. Molecules can be drawn in
various ways, making search and comparison difficult.
Constructing a so-called canonical molecule represen-
tation is a special representation of the molecule un-
der consideration. This representation consists out of
a planar drawing which does not necessarily leads us
to an unique representation but it limits the number
of representations [2] which have to be compared and
therefore is reducing effort for characterization.

Planar graphs, as we already have seen are a good
way to model real-world situations. They do also provide
some helpful properties as for example a few graph prob-
lems that are considered being part of the complexity
class NP, but while limiting the input graph to be planar
there exist some efficient algorithms (e.g. 4-COLOR and
MAX-CUT). Planar graphs are also considered to be
sparse graphs in the literature [3]. This property implies
a smaller space / storage footprint but if we are looking
at our possible non-planar input graphs which do not
meet this requirement it shows for our algorithm which
only checks planarity this is irrelevant.

Now that we recognized the importance of planar
graphs, it is easy to see that we need an efficient
algorithm in order to test any graph for planarity.

C. Notation

This section will present some formal notations which
will be used throughout this paper. Our definitions adhere
the most to definitions from Hopcroft and Tarjan [2].

Let G be a Graph G = (V, E) consisting of a set
of vertices V' and a set of edges £. We will limit our
algorithms to finite graphs represented by finite sets of
vertices and edges. |V| depicts the number of vertices in
the graph G, while |E| describes the number of edges.

Furthermore a graph is undirected if the order of an
edge e = (v,w) with v,w € V is irrelevant and the
distinct vertices v and w can be swapped. Otherwise the
graph is called directed. We call a graph S = (Sy, Sg)
a subgraph of a graph G = (Gy,Gg) if both Sy C Gy
and Sp C G are satisfied.

A path is defined by a sequence of vertices and edges
in a way that the vertices are connected by the selected
edges. Every vertex has a path to itself containing no
edges (trivial path). Cycle is the term for a path which
consist out of one or more edges and leads from a vertex
v1 to vertex v; additionally all edges and vertices have
to be distinct excluding the start and end vertex vy [2].

Before starting to look at some previous research it
is important to differentiate planar graphs and a planar
embedding of a graph: While planarity is a property of
an abstract graph composed of sets of vertices and edges,
a planar embedding is a property of a possible drawing.
In most cases a planar graph can be drawn as well
planar as non-planar, planar drawings are called planar
embeddings. It should be noted that not every planar
graph has a non-planar drawing: Consider for example
the graph made up of two vertices connected by one
edge.

Hopcroft and Tarjan present a definition for planarity
which follows our intuition (condition 3) and adds some
more restrictions:

Theorem 1 (Planarity [2]). A graph G is planar if and
only if there exists a mapping of vertices and edges of
the graph into the plane such that:

1) Each vertex is mapped onto a distinct point.

2) Each edge (v,w) is mapped onto a simple curve?,
with vertices v and w mapped onto the endpoints
of the curve.

3) Mappings of distinct edges have only the mappings
of their common endpoints in common.

D. Previous Research

The first simple classification was provided by the
well-known mathematician Euler in 1758:

Theorem 2 (Euler [2]). For every planar graph G with
vertex set V and edge set E, the number of edges is

limited by |E| < 3|V| — 3.

This gives us an “easy” testing criteria which is able
too exclude some graphs without complicated calcula-
tions only by counting edges, but it does not provide a
complete characterization of all planar graphs. A graph

In most cases this will be a straight or slightly bend line.

TABLE I
PREVIOUS ALGORITHMS (1961 — 1967)

Year Algorithm Runtime
1961 Auslander and Parter + (Goldstein) O(n®)
1964 Demoucron, Malgrange and Pertuiset ~ O(n?)
1967 Lempel, Even and Cederbaum O(n?)

which complies to this criteria can still be non planar
e.g. consider the complete graph on five vertices.

Preceding the complete characterization done by Ku-
ratowski we need to introduce the term subdivision: A
subdivision is a graph which is produced by a modifi-
cation of G in which one (or more) edges (v,w) are
replaced by a new vertex x and edges between the
new vertex and the old endpoints (v,z) and (z,w).
Kuratowski’s theorem stated in 1930 a complete charac-
terization which builds upon the two minimal non-planar
graphs K5 and K3 3:

Theorem 3 (Kuratowski [2]). A graph G is planar if
and only if, G does not contain any subgraph that is
either equal to K5 or K33 or a subdivision of these.

Kuratowski’s theorem provides a complete characteri-
zation, which was however useless in algorithmic aspects
because application for a test for these subgraphs would
lead to an exponential algorithm in 1974 [2]. Since 1984
there exists a linear-time algorithm for finding Kura-
towski subdivisions in graphs but it is a very complex
algorithm [4].

Concluding it is easy to see that none of the presented
theorems can be used to build an efficient algorithm and
therefore all algorithms have adopted a different strategy:
Most algorithms try to construct a planar embedding by
adding nodes or edges step by step. This started 1961 by
Auslander und Parter who proposed an algorithm which
provides the basis of the algorithm under examination
and works quite similar. Goldstein corrected an error in
the presentation of the algorithm which has an upper run-
time bound of O(n?®) [2]. Demoucron, Malgange and
Pertuiset had a different idea, three years later, of the
successive embedding of fragments while paying atten-
tion to the created shapes which lead to an enhancement
of factor n [5]. In 1967 Lempel, Even and Cederbaum
presented another algorithm which starts by embedding
a single vertex and then adding all incident vertices step
by step. In the original paper no runtime bound is proven
but Tarjan has shown that the algorithm has a runtime of
O(n?) [2]. Hopcroft and Tarjan achieved a honourable
research success in 1974 with the development of the

Fig. 1. Example: Graph

Ug V9

v

V10

U2
V4

U3 U1

first linear-time planarity testing algorithm which we will
present in the next section.

II. ALGORITHM

The proposed algorithm of Hopcroft and Tarjan is
based on the algorithm from Auslander, Partner and
Goldstein. It decomposes the graph into several paths
using a modified depth-first search and then tries to
embed each path one-by-one in a planar way.

It can be divided into five major steps: First it will
reject all input graphs with an edge count which does not
satisfy the upper bound according to the Euler Theorem
as explained in section I-D. If the count of edges is
greater than 3|V| — 3 we will declare the graph as non-
planar. In the next step the graph will be separated
into their biconnected components. Third, the algorithm
constructs a special form of a depth-first search tree
which defines the end of the initalization phase. The
produced tree is used as a basis for all next steps in the
working phase. This phase consists of two steps which
are tightly connected. First a path in the search tree
is retrieved directly following an attempt of its planar
embedding with respect to the paths which has been
embedded before. This procedure is repeated until the
complete graph has been successfully embedded or the
algorithm encountered a non-planar graph.

The five major steps are represented by pseudocode
below, which may help to find the way through the
detailed explanation.

We will use the example graph (see Figure 1) to
visualize the steps of the algorithm.

Algorithm 1 Planarity by Hopcroft and Tarjan
1. procedure PLANARITY(G)

2: E <+ 0

3: for each edge of G do

4: E+ F+1;

5: if £ > 3V — 3 then

6: goto nonplanar;

7: divide G into biconnected components;

8: for each biconnected component G do

9: run DFS on G for numbering;

10 transform G into palm tree P;

11: find a cycle c in P;

12: construct planar representation for c;

13: for each segment after deletion of ¢ do
14: apply recursively to all segments;

15: if segment plus cycle c is planar and
16: segment can be added to embedding
17: then

18: add segement to planar embedding;
19: else
20: goto nonplanar;

A. Structuring

Before executing the working phase structuring the
graph is essential because the special structure of a
depth-first search tree improves efficieny [2].

Before creating these structure we will introduce a
form of connectivity which simplifies the algorithm.

Theorem 4 (Biconnected Components [2]). A graph G
is biconnected, if and only if G does not contain any
cutnode. A cutnode is a vertex which would increase the
amount of connected components in case of removal. To
make things clearer: If a graph contains three distinct
vertices A, B, C so that C is reachable from A but every
path between C and A contains the vertex B, then B is
a cutnode of graph G. If we would remove B the graph
would fall apart into two connected components and in
particular could not statisfy biconnectivity.

A graph which consists of two connected components
is planar, if and only if each component is planar [2].
This is obvious as no edges exists between two con-
nected components which would prevent a planar em-
bedding. Using the definition above we can extend this
observation to biconnected components.

Theorem 5 (Biconnected Components Planarity [2]). A
graph is planar, if and only if all biconnected compo-
nents are planar.

Fig. 2. Example: Graph converted to palm tree

10 @ 7@ 8 5@

9@ @6 @4

3@

This allows us to apply the algorithm on each com-
ponent separately. Each component now satisfies a few
basic assumptions [6] that simplify our task:

o Graph G does not have any self loops or multiple
edges between two vertices

e G is undirected

e G is connected

o G is biconnected (no vertex is of degree 1)

In the following, we will assume that G is the current
biconnected component itself. After this decomposition
we apply a simple depth-first search (DFS) and rename
all vertices by their DFS number which represents the
order of discovery. Applying a depth-first search also
computes a distribution of edges into two different
partitions:

Theorem 6 (Tree Arcs [2]). Edges of graph G, that
where traversed during depth-first search. These edges
span the depth-first search tree.

Theorem 7 (Fronds / Back-Edges [2]). Edges of graph
G, that where not traversed during depth-first search
and which lead from a vertex to another vertex which
has been visited “earlier” (e.g. (v,w) is a frond if
DFS-Number(w) < DFS-Number(v)).

With this distribution a palm tree can be constructed as
a depth-first search tree in reverse order with additionally
added fronds (e.g Figure 2).

We will now look closer on the working phase of
the algorithm, especcially the path finding process and
embedding task.

B. Pathfinding

The algorithm now starts by finding a cycle (as
proposed by [7]) in the graph. In order to speed up the
pathfinding we will calculate low-points for each vertex.
Let S, be the set of vertices for which a path from v
or its descendents exists that consist of fronds [2]. They
are defined as follows:

LPT; (v) = min ({v} U S,)
LPTs (v) = min ({v} U[S, \ LPT2 (v)])

The definition given by Hopcroft and Tarjan [2] is
quite accurate: “LPT; (v) is the lowest vertex below v
reachable by a frond from a descendent of v.” LPTs
extends this definition to the second lowest vertex. Our
DFS can be easily modified in a way that it computes
low-points during the search. Since we assume bicon-
nectivity in our graph all low-points are well defined as
every vertex has at least two neighbours [6].

In the section II-C we will describe the implemen-
tation details and used data structure in detail. To un-
derstand the meaning of low-points, however we will
introduce the concept of adjacency lists here. Typically,
graphs are represented by adjacency matrices consisting
of rows and columns filled with zeros and ones where
a one defines an adjacency of vertices. Hopcroft and
Tarjan use a much simpler model of adjaceny lists.
Each vertex has one associated adjacency list which
contains all vertices that are adjacent to the vertex under
consideration. If the graph is undirected the vertex is
present in both adjaceny lists, if it is directed only in
one. To be more clear, it is present in the adjacency list
of the start vertex. This way of storage allows a much
easier way of traversing a graph without producing an
at least quadratic-time algorithm.

Using the calculated low-points we re-sort the ad-
jacency lists according to increasing value of function
¢. This small change has the advantage that peforming
another DFS on the input graph using the new lists au-
tomatically returns a cycle [2]. It also gurantees that we
achieve a step-by-step walkthrough of our graph which
will be important later [6]. A lot of other interesting
properties of paths generated this way can be read in [2]
Sec. 5 Pathfinding.

2-w if (v,w) is a frond

2-LPTy (w) if (v, w) exists
and LPTs (w) <w
if (v, w) exists
and LPTs (w) < w

o((v,w)) =
2. LPT; (w) + 1

Fig. 3. Example: Segments after deletion of primary cycle

7@ 8 5@
S.
06 /i@

51 SS

C. Embedding

After structuring the graph into a form which is
easy to explore the embedding can start. As already
stated the strategy is to incrementally build a new planar
embedding on top of a drawing area. For the following
sections our drawing area is like a white piece of paper
where a planar embedding of graph G is created. The
primary cycle is the first cycle which is discovered by
the DFS [2]. After we found our primary cycle Cy we
can embed this cycle in our drawing area, as it is empty
this does not cause any problems. After this the primary
cycle has been processed and therefore can be deleted
from the original graph. This changes the original palm
tree (e.g. Figure 3). The palm tree of graph G thus breaks
down into several individual segments. A segment is
either a single frond (v,w) or a tree edge including a
subtree with root w and all associated fronds [2]. Each
segment can be associated with an edge, as defined in [8].
Considering a cycle C' which is associated with an edge
e then another edge emanates form C' if the start vertex
is part of the cycle but the edge itself is not part of it [8].
This brings us to a different definition of a segment: a
segment consists of all edges that are emanating from
C plus the original cycle [8]. Additionally a segment is
connected to the primary cycle Cy via one tree edge and
by at least one frond.

The algorithm uses a recursive approach in order to
embed these segments one-by-one. The embedding takes
place immediately after discovery by DFS. In order to
embed a segment we apply the algorithm again after
completing treatment of the primary path. This time,
however, recursively to the single paths in a segment
itself. A path is either a single frond or a series of tree

Fig. 4. Example: Blocking fronds

10 @

edges following one frond. A cycle can be formed using
this path by adding the set of tree edges that led from
a vertex in the path to another vertex which is already
part of the path [2]. It has to be be noted that a segment
must always be embedded as a whole on one side of
the cycle, either on the right or left side of the primary
cycle [2]. If there are any blocking fronds which would
inhibit an embedding, we will try to achieve a successful
embedding by moving segments or parts of segments
around. If even moving segments does not allow any
embedding of a segment the graph is non-planar. The
algorithm would then stop and return a negative result.
But how can an algorithm achieve this task while not
producing a run-time that is at least quadratic?

The algorithm decides on which side a path should
be embedded by looking at the fronds which are already
placed. The following theorem specifies this further:

Theorem 8 (Blocking Fronds [2]). A path from v; to v;
can be added to a planar embedding by placing it on
the left (right) side of the primary cycle if and only if
no frond (x,vy) that has been already embedded on the
left (right) satisfies v; < v < v;.

In Figure 4 this situation is visualized. The dashed
path (3,1) can only be embedded on the right side
because there exists a blocking frond on the left side
that has an end vertex which is between the start und
end vertex of the path to be embedded (e.g. 1 < 2 < 3).
If there would be another frond or tree edge which had
been embedded on the right side (e.g. (10,2)) the path
could not be embedded either on the right or left side
and the graph would be non-planar. In order to efficiently
implement this functionality in an algorithm, a number

Fig. 5. Example: Planar embedding after second segment (.S2)

@ 10

of special data structures are required, which we would
now like to discuss further. Hopcroft and Tarjan propose
the usage of two different stacks L and R to save the
position of segments and paths while execution. These
stacks contain all vertices that are kind of a pitstop
between the way from the first vertex (1) to v; and have
a frond which enters them from the left [2]. Stack R is
specified analogous with the difference that it contains
fronds which enter on the right side. The stacks are
ordered to simplify detection of blocking fronds. In most
cases of embedding a graph there is a situation where if
one frond is flipped to the other side some other fronds
must be flipped also to perserve planarity. In order to
improve the efficiency to the next level we introduce
blocks. Hopcroft and Tarjan [2] define them as follows:
“[...] a block B [is] a maximal set of entries in L and
R which correspond to fronds such that the placement
of any one of the fronds determines the placement of
all others”. Each block is represented by an ordered pair
(x,y) whereby x is used to mark the last block entry on
L and y analogous for R. Using these new stack it is
possible to flip some paths from one side to the other in
an efficient way as it only involves pointer changing.

The following Figure 5 presents the status of the
embedding after embedding of the second segment.

The stacks contain the following entries (the topmost
entry is the entry which is on the right):

L=[12]
R=1[13
= [(73)]

A path embedding is thus done as follows, after

detection of an unexplored segment and selection of a
path the algorithm checks if the “position of the top
block in stack B determines position of the path” [2]. If
a position determining block exists the block is deleted
from the stack B. Switching the block entries from L and
R and vice versa creates new space on the left side where
the path could be embedded but if still any entries on
the left in conflict with the path p do exist the algorithm
aborts and returns nonplanar. This procedure is repeated
until no position determining blocks exist anymore. Once
this assumption is true and the path is normal® we have
to add the end vertex to stack L. Embedding of a path is
then finished or the algorithm already stopped with the
result non-planar. This procedure is applied recursively
to all other paths which have not been embedded in the
segment and then to all other unexplored segments.

In this section we have described the procedure of the
algorithm in detail. But how can this whole procedure
be linear with so many recursive loops and queries?

III. ANALYSIS

As we already have seen the complex nested structure
of the algorithm does not provide an easy understanding
of the running time.

In the following we will analyze the running time
of the whole algorithm of Hopcroft and Tarjan in the
original form. We will start with the initalization phase
and then move on to the working phase.

A. Initalization Phase

The algorithm starts with application of Euler’s The-
orem. Counting the edges is a simple task as the only
need is to traverse all vertices. Starting at one vertex we
count the adjacent edges. This procedure can be applied
in O(|V]) [2]. It is followed by the seperation of the
input graph into one or more biconnected components.
Even if it is not obvious Hopcroft and Tarjan invented
a linear time algorithm for this graph theoretic problem
in 1972 [2].

As already mentioned, to create the palm-tree a depth
first search is executed on the input graph to get two
partitions of edges: fronds and tree edges. This first DFS,
which also calculates the low points in parallel, takes
O(|V|+|E|) time because it is only a normal DFS which
has been enriched with some additional calculations that
are based on values that have been calculated before.
Additionally the low point values need to be re-sorted.

3The end vertex of our path is bigger (in terms of DFS-Numbers)
than the end vertex of the earliest generated path containing the start
vertex of the path under examination [2].

While exploiting the advantages of radix sort we are
able to achieve an timebound of O(|V|+ |E|) [2]. With
this fourth step we completed the initalization phase. As
all substeps have linear run-time the entire initalization
phase has also linear runtime.

B. Working Phase

The working phase is built upon a second DFS which
traverses the edges in order to find paths. The ordered
adjacency lists are used in the following way: If an edge
is discovered it is added to the current path which is
stored in a variable. If instead a frond is discovered
we add it to the current path and consider the path as
complete, starting a new path when a new tree edge
is traversed [2]. As soon as a complete path has been
found the DFS is paused and the embedding of the
path is started. The DFS is not continued until the
path has been embedded successful. Embedding forms
the most complex task. It has to be noted that the
embedding procedure is composed of a sequence of
stack manipulations (e.g. adding and deleting elements)
with each manipulation needing only a constant amount
of time (O(1)). The number of paths in a graph is
bound by |E| — |V| 4 1 therefore only a maximum of
O(|V|+ |E|) entries can be added and modified on the
different stacks [2]. Consequently all stack calculations
that occur when the algorithmus is applied to an input
graph add up to O(|V| + |E|). As in the initialization
phase, all substeps are linear and therefore the entire
working phase is also linear in terms of runtime.

Summing up, because of the linearity of the initial-
ization phase aswell as the working phase the whole
algorithm invented by Hopcroft and Tarjan is able to test
a graph for planarity in linear time (O(|V|+ |E|)) [2].

IV. DISCUSSION
A. Conclusion

The planarity testing algorithm by Hopcroft and Tarjan
in 1974 was the first one which runs in linear time. This
achievement by itself is a big deal regarding the power
of algorithms. But it comes also with a dealbreaker: the
algorithm is overly complex consisting of a multi-nested
structure with specific data representations (e.g. stacks
for incoming fronds). In addition, the implementation in
ALGOL is outdated and for today’s readers certainly not
a language they know, especially if the implementation
and presentation in the paper do not match and differ in
parts. [2].

The algorithm by Hopcroft and Tarjan in their original
version does not return any embedding if the graph is

TABLE 11
NEWER ALGORITHMS (1974 —2014)

Year Algorithm Runtime
1974 Hopcroft und Tarjan O(n)
1976 Booth and Lueker O(n)
1985 de Fraysseix, de Mendez and Rosenstichl O(n)
1993 Shih and Hsu O(n)
2004 Boyer and Myrvold O(n)
2014 Mondshein and Schmidt O(n)

planar. It just answers a simple yes-no-question: Is the
given graph planar? An embedding would state how
the graph could be drawn in a planar way. Hopcroft
and Tarjan said that it would be an easy enhancement
to modify the algorithm in a way a planar embedding
would be returned. Using a special so-called clockwise
representation of adjacency lists we could define in
which order the adjacent edges should be placed in a
unique way.

Not until 20 years later Mehlhorn and Mutzel pro-
posed a version of the algorithm which returned a planar
embedding when the test was successful [8]. This version
still perserves the linear runtime O(n) of the original
algorithm from Hopcroft and Tarjan. All in all the
algorithm is still an important step in research history
even if it is not up to date anymore.

B. Current Development

But the research community has not been idle for the
past 40 years. The aim was to simplify both the algorithm
concepts as well as the implementation. In addition,
more emphasis has been placed on efficient storage
utilization since Hopcroft and Tarjan found out that
available storage was the real bottleneck when executing
the algorithm on modern computers [2].

Almost all newer algorithms still use the technique of
constructing a planar embedding step by step and they
only vary in different selection rules which includes what
kind of pieces are chosen and in which order they are
chosen.

Two years after Hopcroft and Tarjan published their
results, Booth and Lueker came up with a new method
which works by adding vertices step by step. To achieve
a linear efficiency they use an st-numbering in combi-
nation with pg-trees which is a datastructure that allows
flipping in linear time [9].

The so-called FMR-Algorithm invented by de Frays-
seix, de Mendez and Rosenstiehl in 1985 simplifies the
approach of Hopcroft and Tarjan further [9]. Instead
of paths, which are rather complicated, they use single

edges which also provides the advantage of a better
and more formal characterization of planarity. With an
additional interlacement graph which is not explicitly
built they try to detect the sides on which an edge can
be embedded [5].

Shih and Hsu (1993) followed a different idea but
used the method of adding vertices. It constructs either a
planar embedding or outputs “non-planar”. They discov-
ered that biconnected components can not change their
embedding after they have been successful embedded. In
order to codify this biconnected components, PC-trees
consisting of C-nodes are used to simplify embeddings
of further vertices. A problem is to find the point at
which a biconnected component (block) can be codified
into a C-node [5].

The algorithm by Boyer and Myrvold designed in
2004 is one of the two state-of-art algorithm in com-
bination with the FMR-Algorithm. It is based on a DFS,
a strategy we already know from Hopcroft and Tarjan
but it is not as complicated. Boyer and Myrvold are
adding edges step by step while using a special data
structure for representing biconnected components that
allows moving in constant time [5]. Hopcroft and Tarjan
do not return a planar embedding as discussed before
but in this algorithm the embedding is a direct result of
application. If the input graph is non-planar a subdivision
of K5 or K3 3 (as defined in section I-D) is extracted and
returned [9].

The newest research insights from 2014 came from
Germany where Schmidt created a method using the
Mondshein Sequence. It uses 3-connected graphs to build
incrementally planar embeddings of every component.
The big advantage of this method is the reduction to
a simple test in each step if the newly added edge is
embedded in the external border of the current embed-
ding. This algorithm is not really an easier one because
the construction of the needed Mondshein sequence that
helps to select the next edge is rather complicated [10].

Summing up it can be said, that Hopcroft and Tarjan
did achieve a quite important breakthrough in a time
when graphs have not been used in the same manner
as nowadays. Even if the algorithm is really compli-
cated and not easy to understand we hope that with
our application-oriented explanation understanding the
underlying concepts was easier. The search for newer
algorithms will not stop in the near future as the im-
portance of graphs is increasing especcially in the big
data sphere where data warehouses with billions of
terabytes of data need to be represented in forms that
are easy to explore. Future studies on the current topic

are therefore suggested in order to establish a better
application of these graph algorithms on big data and
the resulting difficulties regarding space utilization and
parallelism needs. More details on the algorithm can be
found in the original paper of Hopcroft and Tarjan [2]
aswell as in [11] and [12]. Additionally the slides made
by Prof. Sarvottamananda from Ramakrishna Mission
Vivekananda University [6] provide very good figures
which may help the more visual oriented readers.

REFERENCES

[1] IBM Data Processing Division. System/360 announcement.
Fetched: 2018-05-05. [Online]. Available: http://www-
03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PR360.html

[2] J. Hopcroft and R. Tarjan, “Efficient Planarity Testing,” Journal
of the ACM (JACM), vol. 21, no. 4, pp. 549-568, 1974.

[3] I G. Tollis, “Lecture Notes on Planarity Testing And Construc-
tion Of Planar Embedding,” 2003.

[4] S. Williamson, “Depth-first search and Kuratowski subgraphs,”
Journal of the ACM (JACM), vol. 31, no. 4, pp. 681-693, 1984.

[S] M. Patrignani, “Planarity Testing and Embedding.” 2013.

[6] S. Sarvottamananda, “Planarity Testing of Graphs,” 2011.

[7] ——, “Planar Graphs, Planarity Testing and Embedding,” 2014.

[8] K. Mehlhorn and P. Mutzel, “On the Embedding Phase of the
Hopcroft and Tarjan Planarity Testing Algorithm,” Algorith-
mica, vol. 16, no. 2, pp. 233-242, 1996.

[9] M. Chimani, “VL: Automatisches Zeichnen von Graphen: Pla-
naritaet testen,” 2007.

[10] J. M. Schmidt, “The Mondshein Sequence,” in Automata, Lan-
guages, and Programming, J. Esparza, P. Fraigniaud, T. Hus-
feldt, and E. Koutsoupias, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 967-978.

[11] W. Kocay, “The Hopcroft-Tarjan Planarity Algorithm,” Com-
puter science department. University of Manitouba, 1993.

[12] D. Gries and J. Xue, “The Hopcroft-Tarjan Planarity Algo-
rithm, Presentation and Improvements,” Cornell University,
Tech. Rep., 1988.

[13] Deo, Narsingh, “Note on Hopcroft and Tarjan’s Planarity Algo-
rithm,” Journal of the ACM (JACM), vol. 23, no. 1, pp. 74-75,
1976.

