Lehrgebiet Theoretische Informatik

Rossmanith-Dreier-Hark-Kuinke

Blatt 1 1.5.2017

Übung zur Vorlesung Formale Sprachen, Automaten und Prozesse

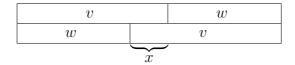
Aufgabe T1

Es seien $v, w \in \Sigma^*$, so daß vw = wv.

Beweisen Sie: Es existieren $u \in \Sigma^*$, $i, j \in \mathbb{N}_0$ mit $v = u^i$, $w = u^j$.

Lösungsvorschlag:

Beweis durch Induktion über |vw|.



- Falls |vw| = 0, dann folgt die Aussage mit $u = \varepsilon$: $v = u^0$ und $w = u^0$.
- Falls |vw| > 0:
 - Falls |v| = |w|, dann gilt v = w und für u = v = w und i = j = 1 gilt nun $u^i = u^j = v = w$.
 - Falls |v| > |w| (|w| > |v| analog), dann existiert ein $x \in \Sigma^+$ mit wx = v und xw = v. Da |wx| < |vw| existiert durch Induktionsschluß ein $u \in \Sigma^*$, so daß $x = u^i$ und $v = u^j$. Somit gilt $w = u^{i+j}$.

Aufgabe T2

Sei $w \in \Sigma^*$ ein Wort. Wenn wir das Wort w rückwärts schreiben, so nennen wir es w^R . Das ist aber keine anständige Definition.

- 1. Definieren Sie die Abbildung \cdot^R formal.
- 2. Ist $w \mapsto w^R$ ein Homomorphismus?

Lösungsvorschlag:

- 1. Bei einem freien Monoid (Σ^*, \cdot) hat jedes Wort w eine eindeutige Darstellung $w = c_1 \cdot \ldots \cdot c_n$ mit $c_i \in \Sigma$. Somit läßt sich die Umkehrung definieren als $w^R := c_n \cdot \ldots \cdot c_1$.
- 2. Falls $|\Sigma| = 1$, dann gilt o.B.d.A. $\Sigma = \{a\}$. Somit gilt $w^R = (w_1 \dots w_n)^R = (a \dots a)^R = a^R \dots a^R = w$. Allerdings, für $|\Sigma| > 1$, wähle $a, b \in \Sigma$, $a \neq b$. Dann gilt $(ab)^R = ba$, aber $a^R b^R \neq (ab)^R$. Somit ist $w \mapsto w^R$ kein Homomorphismus.

Aufgabe T3

Finden Sie einen regulären Ausdruck, dessen Sprache alle Wörter in den beiden linken Spalten enthält und keines der Wörter in der rechten Spalte.

babcb	bbaa	cbbbcaaac
aabcbcb	abcb	ccbcccacb
baabbccaac	accaa	cacbaacc
bbbbaa	abacaca	accbaaca
ccac	abcaacbcc	cbccbacbcb
bbaacacc	baccacaab	

Lösungsvorschlag:

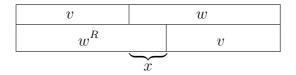
Unser Vorschlag ist $(a + b)^*(a + c)^*(b + c)^*$. Es gibt natürlich unendlich viele richtige Lösungen. Die faulste Lösung ist babcb + aabcbcb + baabbccaac + bbbbaa + ccac + bbaacacc + abcaaaaca + bbaa + abcb + accaa + abcacaca + abcacacacbcc + baccacaab.

Aufgabe H1 (10 Punkte)

Gegeben seien $v, w \in \Sigma^*$ mit $vw = w^R v$, und $|w| \ge |v|$. Beweisen oder widerlegen Sie, daß dann $(vw)^R = vw$ gilt.

Lösungsvorschlag:

Wegen $vw = w^R v$ und $|w| \ge |v|$ existiert ein $x \in \Sigma^*$ mit w = xv und $w^R = vx$.

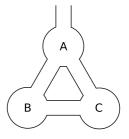


Dann gilt aber auch $xv = w = (w^R)^R = (vx)^R = x^R v^R$. Also ist insbesondere $v = v^R$. Daraus folgt dann leicht

$$vw = w^R v = w^R v^R = (vw)^R.$$

Aufgabe H2 (10 Punkte)

Geben Sie einen regulären Ausdruck an, der jeden (nicht leeren) Pfad durch das nebenstehende Museum beschreibt. Ein Pfad startet im Raum A und endet ebenfalls dort. Beispielsweise wäre ABCABABCA ein gültiger Pfad aber ABBA oder ε nicht.



Lösungsvorschlag:

Anschaulich können wir einen Weg durch das Mini-Atomium folgendermaßen gliedern: Wir kehren immer wieder in den Raum A zurück und bewegen uns dazwischen zwischen den Räumen B und C. Letzteres läßt sich durch den regulären Ausdruck

$$H = (BC)^{+} + (BC)^{*}B + (CB)^{+} + (CB)^{*}C$$

beschreiben. Die vier Teile entsprechen den Wegen, die

- 1. in B beginnen und in C enden,
- 2. in B beginnen und in B enden,
- 3. in C beginnen und in B enden und
- 4. in C beginnen und in C enden.

Der gesamte reguläre Ausdruck ist dann

$$(AH)^*A = \left[A((BC)^+ + (BC)^*B + (CB)^+ + (CB)^*C)\right]^*A.$$