
Problem Kernels

Let L be a parameterized problem.

Sometimes you can answer the question (w , k) ∈ L as follows:

▶ If k is very big, use brute force.

▶ If k is small and w is complicated, then (w , k) cannot be a
solution.

▶ If k is small and w is simple, then we can easily solve
(w , k) ∈ L.



Problem Kernels

Definition
A function f : Σ∗ ×N → Σ∗ ×N is a reduction to a problem kernel
for a parameterized problem L, if

▶ (w , k) ∈ L iff f (w , k) ∈ L,

▶ there is a function f ′ : N → N, such that |w ′| ≤ f ′(k), if
f (w , k) = (w ′, k ′),

▶ f can be computed in polynomial time.

In a nutshell: A reduction to a problem whose size is limited by a
function of the parameter.



Example Vertex Cover

Assume some graph has a vertex cover of size k .

Let v be a vertex whose degree is at least k + 1.

Question:

Must v belong to the vertex cover of size k?

Reduction to a problem kernel:

If there is a node with degree > k , remove it. The original graph
has a VC of size k iff the reduced graph has a VC of size k − 1.
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Example Vertex Cover

Question:

How big is the resulting graph at most?

(if we also remove isolated vertices)

Answer:

▶ The vertex cover itself consists of only k nodes.

▶ Each of these k nodes can have at most k neighbors.

▶ There can be at most k(k + 1) nodes in total.
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A smaller Problem Kernel

Theorem (Nemhauser and Trotter)

Let G = (V ,E ) be a graph of n nodes and m edges.
It takes only polynomial time to find two disjoint node sets C0 and
V0 such that

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.

If G has a vertex cover of size k , then
|V0|+ |C0| ≤ 2k
Why???

An optimal vertex cover of G [V0] combined with C0 is
an optimal vertex cover of G .
Why???
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A smaller Problem Kernel

This results in the following algorithm that reduces (G , k) to
(G [V0], k

′).

▶ Compute C0 and V0

▶ Let k ′ = k − |C0|
▶ G now has a vertex cover of size k if and only if G [V0] has a

vertex cover of size k ′.

If 2k ′ < |V0|, then G cannot have a vertex cover of size k .



A smaller Problem Kernel

The following algorithm solves Vertex Cover:

1. Compute V0 and C0

2. Output No if 2(k − |C0|) < |V0|
3. Compute an optimal vertex cover C1 of G [V0]

4. If |C1|+ |C0| ≤ k output Yes and No otherwise

Running time: nO(1) + O(k2k)



Proof of the Nemhauser–Trotter Theorem

An algorithm that computes C0 and V0:

Let G = (V ,E ), V ′ be a disjoint copy of V , and GB = (V ,V ′,EB)
be the bipartite subgraph such that

{x , y ′} ∈ EB ⇐⇒ {x , y} ∈ E .

▶ Compute an optimal vertex cover CB for GB .

▶ Let C0 = { x | x ∈ CB and x ′ ∈ CB }.
▶ Let V0 = { x | either x ∈ CB or x ′ ∈ CB }.
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GB CB
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Proof of the Nemhauser–Trotter Theorem

Obviously,

▶ C0 and V0 are disjoint

▶ C0 and V0 can be computed in polynomial time

We need to prove the three statements of the theorem:

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.



Statement 1

Claim: If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a
vertex cover of G .

Let D ⊆ V0 be a vertex cover of G [V0] and e = {x , y} ∈ E an
arbitrary edge.

Let I0 = V − V0 − C0.

▶ If an endpoint of e is in C0. . . okay

▶ If both endpoints are in V0. . . okay

▶ x ∈ I0 ⇒ y , y ′ ∈ CB ⇒ y ∈ C0, . . . okay



Statement 2

Claim: There is an optimal vertex cover of G containing all of C0.

Let S be an optimal vertex cover and SV = S ∩ V0, SC = S ∩ C0,
SI = S ∩ I0, S̄I = I0 − SI .

Lemma

(V − S̄I ) ∪ S ′
C is a vertex cover of GB .

Proof

Let {x , y ′} ∈ EB .

If x /∈ S̄I , then x ∈ (V − S̄I ) ∪ S ′
C .

If x ∈ S̄I , then x ∈ I0, x /∈ S ⇒ y ∈ S , y , y ′ ∈ CB ⇒
⇒ y ∈ C0 ⇒ y ∈ S ∩ C0 = SC ⇒ y ′ ∈ S ′

C .


