Parameterized Algorithm

```
Input: G = (V, E), k
```

Parameter: k

Output: A vertex cover VC(G, k) of size k or smaller, if it exists.

if $E = \emptyset$ then return \emptyset if k = 0 the Questions:Choose som
 $G_1 := (V - G_2) := (V - G_2) := (V - G_2)$ 2. Why is the running time $O(f(k)n^c)$?if $|\{v_1\} \cup V$ 3. What exactly is f(k)?then return
else return5. Can we simplify the last lines of the algorithm?

Parameterized Algorithm

Input: G = (V, E), k

Output: A vertex cover VC(G, k) of size k or smaller, if it exists.

if $E = \emptyset$ then return \emptyset if k = 0 then return "no solution" Choose some edge $\{v_1, v_2\} \in E$ $G_1 := (V - \{v_1\}, \{e \in E \mid v_1 \notin e\})$ $G_2 := (V - \{v_2\}, \{e \in E \mid v_2 \notin e\})$ if $VC(G_1, k - 1) \neq$ "no solution" then return $\{v_1\} \cup VC(G_1, k - 1)$ else return $\{v_2\} \cup VC(G_2, k - 1)$ Parameterized Algorithm — Running Time

Every recursive call requires only polynomial time.

How many recursive calls are there?

Every incarnation is a leaf in the recursion tree or has two children.

- ▶ The root has parameter k
- The parameter of a child is at least one smaller compared to the parent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The parameter never becomes negative

Therefore the height of the recursion tree is at most k

Its size is then at most 2^k .

The Long Road to Vertex Cover

- Fellows & Langston (1986): $O(f(k)n^3)$
- Robson (1986): O(1.211ⁿ)
- Johnson (1987): $O(f(k)n^2)$
- ► Fellows (1988): *O*(2^{*k*}*n*)
- Buss (1989): $O(kn + 2^k k^{2k+2})$
- ▶ Downey, Fellows, & Raman (1992): $O(kn + 2^k k^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Balasubramanian, Fellows, & Raman (1996): O(kn + 1.3333^k k²)
- Balasubramanian, Fellows, & Raman (1998): O(kn + 1.32472^k k²)

The Long Road to Vertex Cover

- Downey, Fellows, Stege (1998): $O(kn + 1.31951^k k^2)$
- Niedermeier & R. (1998): $O(kn + 1.292^k)$
- Chen, Kanj, & Jia (1999): O(kn + 1.271^kk²)
- Chen, Kanj, & Jia (2001): O(kn + 1.285^k)
- Niedermeier & R. (2001): $O(kn + 1.283^k)$
- Chandran & Grandoni (2004): $O(kn + 1.275^k k^{1.5})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Chen, Kanj, & Xia (2005): O(kn + 1.274^k)

Bounded Search Trees

A Bounded search tree algorithm must fulfil these condition on its recursion tree:

- Every node is labeled by some natural number
- The root is labeled by some function of the parameter
- The number of children of a node is limited by some function of the parent's label

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Children are labeled by smaller numbers than the parent

Correctness

Theorem

Let an algorithm be a bounded search tree algorithm. Then there is a function f, such that every search tree for an input with parameter k has at most f(k) many nodes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of Correctness

Proof

We define a function S(k) that is an upper bound on the number of leaves in a subtree whose root is labeled by k.

- Assume that the root is labeled with at most w(k)
- Assume that every node with label k hat at most b(k) many children
- The existence of w and b is guaranteed by the definition of bounded search trees.

Proof of Correctness (cont.)

Proof

$$S(k) \leq b(k)S(k-1),$$

because there are at most b(k) children whose subtrees have each at most S(k-1) many leaves. With S(0) = 1 the solution of this recurrence is

$$S(k) \leq \prod_{i=1}^k b(i).$$

The total number of leaves consequently is at most S(w(k)).

Let u and v be two strings of length n.

We define h(u, v), called Hamming distance of u and v, as the number of positions on which u and v differ.

Example:

h(agctcagtaccc, agctcataacgc) = 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example Closest String

The Closest string problem is defined as follows:

Input: k strings s_1, \ldots, s_k of length n, a number m

Question: Is there a string s with $h(s, s_i) \le m$ for all $1 \le i \le k$?

The parameter is m

Motivation: Construct a chemical marker that closely fits to a set of DNA sequences

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In practice *m* is small, e.g. 5

agcacagtacgcaatagtgtcgcaggt agctcagtagccaatagagtcccaggt agatcagttcccaatagagtcgcacgt agctcagtaaaaatagagtcgcaggt agcgcagtacacaatagagtcgcaagt

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

agctcagtacccaatagagtcgcaggt

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

agcacagtacgcaatagtgtcgcaggt agctcagtagccaatagagtcccaggt agatcagttcccaatagagtcgcacgt agctcagtaaaaatagagtcgcaggt agcgcagtacacaatagagtcgcaagt

gctaggagtcagaagtaggcgttgcat gcaatgaatcagaactgggcctagcat gctagggatcagaactaggcctagcat gcaaggaatcataactaggcctagcat

gcaaggaattagaaataggcctagcat

gcaagaaatcagaactagccctagcat

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

gcaaggagtcagaactaggcctagcat

▲ロ▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 … のへで

Input: Strings s_1, \ldots, s_k , a number m.

Algorithm center(s, l) finds out, if there is an s', such that

▶
$$h(s, s') \leq l$$

▶ $h(s', s_i) \leq m$ for $1 \leq i \leq k$

With center we can easily solve the closest string problem:

Just call $center(s_1, m)!$

We can implement center(s, l) as follows:

Choose some string s_i with $h(s, s_i) > m$.

(If no such string exists, then s is a solution and we answer Yes.)

Choose a set *P* of m + 1 positions, where *s* and *s_i* differ.

Try all positions $p \in P$. Each time let s' be the same as s except for position p, where s' coincides with s_i .

Each time call center(s', l-1). If one of them answers Yes, then answer Yes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The size of the search tree is at most $(m+1)^m$.

- ▶ The root is labeled with *m*
- Children are labeled with smaller numbers than the parent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ If the label is 0, we find a solution in polynomial time.
- Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this The size of t problem is *fixed parameter tractable*, if *both k* and m are parameters.

- The root is labeled with m
- Children are labeled with smaller numbers than the parent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- If the label is 0, we find a solution in polynomial time.
- Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this The size of t problem is *fixed parameter tractable*, if *both k* and m are parameters.

- The root is labeled with m
- Children are labeled with smaller numbers than the parent
 If For applications *m* is the crucial parameter.
- Nevertheless, it is also interesting to consider the
 - parameter k.

This a Question: Is Closest String fixed parameter tractable, if k is the parameter?

(Both questions, for k and m, were open for a long time.)

Analysis of Bounded Search Tree Algorithms

lf

- 1. the root of a tree is labeled with k,
- 2. every node has at most two children,
- 3. no label is negative,
- 4. children are labeled with smaller numbers than the parent,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

then it is quite clear that the tree has at most 2^k many leaves.

How can we generalize this obvious fact?

Branching vectors

If every inner node has two children and their labels are exactly one smaller, we get the recurrence relation

$$B_k = B_{k-1} + B_{k-1}.$$

The corresponding branching vector is (1, 1).

A recurrence

$$B_k = B_{k-z_1} + B_{k-z_2} + \cdots + B_{k-z_m}$$

corresponds to the branching vector (z_1, \ldots, z_m) .

We can succinctly describe bounded search trees with branching vectors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If the two branching vectors (1, 1) and (2, 2, 3) occur in a bounded search tree algorithms, we get the recurrence

$$B_k = \max\{2B_{k-1}, 2B_{k-2} + B_{k-3}\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We would like to analyse bounded search tree algorithms with multiple branching vectors. For this end we have to solve recurrences as above. For a branching vector the corresponding recurrence is a linear recurrence equation with constant coefficients.

Its general form is

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_t a_{n-t} \text{ for } n \geq t.$$

We develop a simple method to solve such recurrence equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let us assume there is a solution of the form $a_n = \alpha^n$, where $\alpha \in \mathbf{C}$ can be a complex number. If we insert this solution into the recurrence and set n = t, we get

$$\alpha^{t} = c_1 \alpha^{t-1} + c_2 \alpha^{t-2} + \dots + c_{t-1} \alpha + c_t$$

meaning that α is a root of the *characteristic polynomial*

$$\chi(z) = z^{t} - c_{1}z^{t-1} - c_{2}z^{t-2} - \cdots - c_{t-1}z - c_{t}.$$

On the other hand, $a_n = \alpha^n$ is a solution of the recurrence, if α is a root of

$$\chi(z) = z^{t} - c_{1}z^{t-1} - c_{2}z^{t-2} - \cdots - c_{t-1}z - c_{t}.$$

This is easy to see if we insert it into the recurrence:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_t a_{n-t}$$

If α is a k-fold root of χ , then $a_n = n^j \alpha^n$ for $0 \le j < k$ are also solutions of the recurrence. We can check this again by inserting it into the recurrence:

$$n^{j}\alpha^{n} = \sum_{r=1}^{t} c_{r}(n-r)^{j}\alpha^{n-r} \text{ resp. } n^{j}\alpha^{t} - \sum_{r=1}^{t} c_{r}(n-r)^{j}\alpha^{t-r} = 0.$$

The left hand side is a linear combination of $\chi(\alpha)$, $\chi'(\alpha)$, $\chi''(\alpha)$, ..., $\chi^{(j)}(\alpha)$. The first k-1 derivatives of χ become 0 at α because α ist a k-fold root of χ .

Theorem

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_t a_{n-t}$$
 for $n \ge t$

has the solutions $a_n = n^j \alpha^n$, for every root α of the characteristic polynomial

$$\chi(z) = z^{t} - c_{1}z^{t-1} - c_{2}z^{t-2} - \cdots - c_{t-1}z - c_{t},$$

and for all j = 0, 1, ..., k - 1, where k is the order of the root α . All these solutions are linearly independent. They form a base of the vector space of solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Size of Search Trees

Theorem

A bounded search tree with branching vector(r_1, \ldots, r_m), whose root is labeled with k, has size

 $k^{O(1)}\alpha^k$,

where α is the root with biggest absolute value of the characteristic polynomial

$$\chi(z) = z^{t} - z^{t-r_{1}} - z^{t-2} - \cdots - z^{t-r_{m}}$$

where $t = \max\{r_1, ..., r_m\}$.

The Size of Search Trees

Example:

The branching vector (1,3) has the characteristic polynomial

$$z^3 - z^2 - 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The largest root is approximately 1.465571.

The size of search tree is $O(1.465572^k)$.

The Size of Bounded Search Trees

Another example:

The branching vector (1, 2, 2, 3, 6) has the characteristic polynomial

$$z^6 - z^5 - z^4 - z^4 - z^3 - 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The largest real root is 2.160912.

The size of the search tree is therefore $O(2.160913^k)$.

The Reflected Characteristic Polynomial

To determine the characteristic polynomial

$$z^6 - z^5 - z^4 - z^4 - z^3 - 1$$

from the branching vector

is not easy and error-prone.

The reflected characteristic polynomial is

$$1 - z - z^2 - z^2 - z^3 - z^6$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Reflected Characteristic Polynomial

Theorem

The characteristic polynomial has a root α iff the reflected characteristic polynomial has the root $1/\alpha$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Reflected Characteristic Polynomial

Theorem

A search tree with branching vector (r_1, \ldots, r_m) , whose root is labeled with k, has the size

 $k^{O(1)}\alpha^{-k}$,

where α is the root with minimum absolute value of the reflected characteristic polynomial

$$\chi(z)=1-z^{r_1}-z^{r_2}-\cdots-z^{r_m}.$$

Branching Numbers

Definition

For each branching vector there is a corresponding branching number which is the reciprocal of the smallest root of the characteristic polynomial.

Theorem

A search tree with branching number α whose root is labeled k has size

 $k^{O(1)}\alpha^k$.

If the root is simple then the size is $O(\alpha^k)$.