
Parameterized Algorithm

Input: G = (V ,E), k

Parameter: k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1, k − 1)| ≤ |{v2} ∪ VC (G2, k − 1)|
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Questions:

1. What does “no solution” mean?

2. Why is the running time O(f (k)nc)?

3. What exactly is f (k)?

4. Do we always find an optimal vertex cover?

5. Can we simplify the last lines of the algorithm?

Parameterized Algorithm

Input: G = (V ,E), k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if VC (G1, k − 1) ̸= “no solution”
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Parameterized Algorithm — Running Time

Every recursive call requires only polynomial time.

How many recursive calls are there?

Every incarnation is a leaf in the recursion tree or has two children.

▶ The root has parameter k

▶ The parameter of a child is at least one smaller compared to
the parent

▶ The parameter never becomes negative

Therefore the height of the recursion tree is at most k

Its size is then at most 2k .

The Long Road to Vertex Cover

▶ Fellows & Langston (1986): O(f (k)n3)

▶ Robson (1986): O(1.211n)

▶ Johnson (1987): O(f (k)n2)

▶ Fellows (1988): O(2kn)

▶ Buss (1989): O(kn + 2kk2k+2)

▶ Downey, Fellows, & Raman (1992): O(kn + 2kk2)

▶ Balasubramanian, Fellows, & Raman (1996):
O(kn + 1.3333kk2)

▶ Balasubramanian, Fellows, & Raman (1998):
O(kn + 1.32472kk2)

The Long Road to Vertex Cover

▶ Downey, Fellows, Stege (1998): O(kn + 1.31951kk2)

▶ Niedermeier & R. (1998): O(kn + 1.292k)

▶ Chen, Kanj, & Jia (1999): O(kn + 1.271kk2)

▶ Chen, Kanj, & Jia (2001): O(kn + 1.285k)

▶ Niedermeier & R. (2001): O(kn + 1.283k)

▶ Chandran & Grandoni (2004): O(kn + 1.275kk1.5)

▶ Chen, Kanj, & Xia (2005): O(kn + 1.274k)

Bounded Search Trees

A Bounded search tree algorithm must fulfil these condition on its
recursion tree:

▶ Every node is labeled by some natural number

▶ The root is labeled by some function of the parameter

▶ The number of children of a node is limited by some function
of the parent’s label

▶ Children are labeled by smaller numbers than the parent

Correctness

Theorem
Let an algorithm be a bounded search tree algorithm.
Then there is a function f , such that every search tree for an input
with parameter k has at most f (k) many nodes.

Proof of Correctness

Proof
We define a function S(k) that is an upper bound on the number
of leaves in a subtree whose root is labeled by k .

▶ Assume that the root is labeled with at most w(k)

▶ Assume that every node with label k hat at most b(k) many
children

▶ The existence of w and b is guaranteed by the definition of
bounded search trees.

Proof of Correctness (cont.)

Proof

S(k) ≤ b(k)S(k − 1),

because there are at most b(k) children whose subtrees have each
at most S(k − 1) many leaves.
With S(0) = 1 the solution of this recurrence is

S(k) ≤
k∏

i=1

b(i).

The total number of leaves consequently is at most S(w(k)).

Example Closest String

Let u and v be two strings of length n.

We define h(u, v), called Hamming distance of u and v , as the
number of positions on which u and v differ.

Example:
h(agctcagtaccc , agctcataacgc) = 3

Example Closest String

The Closest string problem is defined as follows:

Input: k strings s1, . . . , sk of length n, a number m

Question: Is there a string s with h(s, si) ≤ m for all 1 ≤ i ≤ k?

The parameter is m

Motivation: Construct a chemical marker that closely fits to a set
of DNA sequences

In practice m is small, e.g. 5

Example Closest String

agcacagtacgcaatagtgtcgcaggt

agctcagtagccaatagagtcccaggt

agatcagttcccaatagagtcgcacgt

agctcagtaaaaaatagagtcgcaggt

agcgcagtacacaatagagtcgcaagt

Example Closest String

agcacagtacgcaatagtgtcgcaggt

agctcagtagccaatagagtcccaggt

agatcagttcccaatagagtcgcacgt

agctcagtaaaaaatagagtcgcaggt

agcgcagtacacaatagagtcgcaagt

agctcagtacccaatagagtcgcaggt

Example Closest String

gctaggagtcagaagtaggcgttgcat

gcaatgaatcagaactgggcctagcat

gctagggatcagaactaggcctagcat

gcaaggaatcataactaggcctagcat

gcaaggaattagaaataggcctagcat

gcaagaaatcagaactagccctagcat

Example Closest String

gctaggagtcagaagtaggcgttgcat

gcaatgaatcagaactgggcctagcat

gctagggatcagaactaggcctagcat

gcaaggaatcataactaggcctagcat

gcaaggaattagaaataggcctagcat

gcaagaaatcagaactagccctagcat

gcaaggagtcagaactaggcctagcat

An Algorithm for Closest String

Input: Strings s1, . . . , sk , a number m.

Algorithm center(s, l) finds out, if there is an s ′, such that

▶ h(s, s ′) ≤ l

▶ h(s ′, si) ≤ m for 1 ≤ i ≤ k

With center we can easily solve the closest string problem:

Just call center(s1,m)!

An Algorithm for Closest String

We can implement center(s, l) as follows:

Choose some string si with h(s, si) > m.

(If no such string exists, then s is a solution and we answer Yes.)

Choose a set P of m + 1 positions, where s and si differ.

Try all positions p ∈ P. Each time let s ′ be the same as s except
for position p, where s ′ coincides with si .

Each time call center(s ′, l − 1) . If one of them answers Yes, then
answer Yes.

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

▶ The root is labeled with m

▶ Children are labeled with smaller numbers than the parent

▶ If the label is 0, we find a solution in polynomial time.

▶ Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.
Nevertheless, it is also interesting to consider the
parameter k .
Question: Is Closest String fixed parameter tractable, if k is
the parameter?
(Both questions, for k and m, were open for a long time.)

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

▶ The root is labeled with m

▶ Children are labeled with smaller numbers than the parent

▶ If the label is 0, we find a solution in polynomial time.

▶ Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.
Nevertheless, it is also interesting to consider the
parameter k .
Question: Is Closest String fixed parameter tractable, if k is
the parameter?
(Both questions, for k and m, were open for a long time.)

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

▶ The root is labeled with m

▶ Children are labeled with smaller numbers than the parent

▶ If the label is 0, we find a solution in polynomial time.

▶ Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.
Nevertheless, it is also interesting to consider the
parameter k .
Question: Is Closest String fixed parameter tractable, if k is
the parameter?
(Both questions, for k and m, were open for a long time.)

Analysis of Bounded Search Tree Algorithms

If

1. the root of a tree is labeled with k ,

2. every node has at most two children,

3. no label is negative,

4. children are labeled with smaller numbers than the parent,

then it is quite clear that the tree has at most 2k many leaves.

How can we generalize this obvious fact?

Branching vectors

If every inner node has two children and their labels are exactly one
smaller, we get the recurrence relation

Bk = Bk−1 + Bk−1.

The corresponding branching vector is (1, 1).

A recurrence

Bk = Bk−z1 + Bk−z2 + · · ·+ Bk−zm

corresponds to the branching vector (z1, . . . , zm).

We can succinctly describe bounded search trees with branching
vectors.

Branching Vectors

If the two branching vectors (1, 1) and (2, 2, 3) occur in a bounded
search tree algorithms, we get the recurrence

Bk = max{2Bk−1, 2Bk−2 + Bk−3}.

We would like to analyse bounded search tree algorithms with
multiple branching vectors. For this end we have to solve
recurrences as above.

Linear Recurrence Equations with Constant Coefficients

For a branching vector the corresponding recurrence is a linear
recurrence equation with constant coefficients.

Its general form is

an = c1an−1 + c2an−2 + · · ·+ ctan−t for n ≥ t.

We develop a simple method to solve such recurrence equations.

Linear Recurrence Equations with Constant Coefficients

Let us assume there is a solution of the form an = αn, where
α ∈ C can be a complex number. If we insert this solution into the
recurrence and set n = t, we get

αt = c1α
t−1 + c2α

t−2 + · · ·+ ct−1α+ ct

meaning that α is a root of the characteristic polynomial

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct .

Linear Recurrence Equations with Constant Coefficients

On the other hand, an = αn is a solution of the recurrence, if α is
a root of

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct .

This is easy to see if we insert it into the recurrence:

an = c1an−1 + c2an−2 + · · ·+ ctan−t

Linear Recurrence Equations with Constant Coefficients

If α is a k-fold root of χ, then an = njαn for 0 ≤ j < k are also
solutions of the recurrence. We can check this again by inserting it
into the recurrence:

njαn =
t∑

r=1

cr (n − r)jαn−r resp. njαt −
t∑

r=1

cr (n − r)jαt−r = 0.

The left hand side is a linear combination of χ(α), χ′(α), χ′′(α),
. . . , χ(j)(α). The first k − 1 derivatives of χ become 0 at α
because α ist a k-fold root of χ.

Linear Recurrence Equations with Constant Coefficients

Theorem

an = c1an−1 + c2an−2 + · · ·+ ctan−t for n ≥ t

has the solutions an = njαn, for every root α of the characteristic
polynomial

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct ,

and for all j = 0, 1, . . . , k − 1, where k is the order of the root α.
All these solutions are linearly independent. They form a base of
the vector space of solutions.

The Size of Search Trees

Theorem
A bounded search tree with branching vector(r1, . . . , rm), whose
root is labeled with k , has size

kO(1)αk ,

where α is the root with biggest absolute value of the
characteristic polynomial

χ(z) = z t − z t−r1 − z t−2 − · · · − z t−rm ,

where t = max{r1, . . . , rm}.

The Size of Search Trees

Example:

The branching vector (1, 3) has the characteristic polynomial

z3 − z2 − 1.

The largest root is approximately 1.465571.

The size of search tree is O(1.465572k).

The Size of Bounded Search Trees

Another example:

The branching vector (1, 2, 2, 3, 6) has the characteristic polynomial

z6 − z5 − z4 − z4 − z3 − 1.

The largest real root is 2.160912.

The size of the search tree is therefore O(2.160913k).

The Reflected Characteristic Polynomial

To determine the characteristic polynomial

z6 − z5 − z4 − z4 − z3 − 1

from the branching vector

(1, 2, 2, 3, 6)

is not easy and error-prone.

The reflected characteristic polynomial is

1− z − z2 − z2 − z3 − z6.

The Reflected Characteristic Polynomial

Theorem
The characteristic polynomial has a root α iff the reflected
characteristic polynomial has the root 1/α.

The Reflected Characteristic Polynomial

Theorem
A search tree with branching vector (r1, . . . , rm), whose root is
labeled with k , has the size

kO(1)α−k ,

where α is the root with minimum absolute value of the reflected
characteristic polynomial

χ(z) = 1− z r1 − z r2 − · · · − z rm .

Branching Numbers

Definition
For each branching vector there is a corresponding branching
number which is the reciprocal of the smallest root of the
characteristic polynomial.

Theorem
A search tree with branching number α whose root is labeled k has
size

kO(1)αk .

If the root is simple then the size is O(αk).

