
Tree Decompositions

A tree decomposition of a
graph G is a tree, whose nodes
are called bags. Every bag is a
set of nodes from G .
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▶ Any node and any edge from G ist contained in at least one
bag.

▶ A node contained in two bags A, B must be contained in any
bag between A and B.
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Tree Decompositions and Treewidth
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The width of a tree decompostion is the size of the largest bag
minus 1.

⇒ Here, the treewidth is 2.



Tree Decompositions and Treewidth

Alternative definition:
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The treewidth of G is the minimum number of cops, needed to
catch a robber in G , minus 1.



Tree Decompositions and Treewidth

Given a tree decomposition of G with width w ,
many optimization problems on G can be solved in
time cw · poly(n) using dynamic programming on the
tree decomposition.

Many problems can be solved fast, if a tree decomposition of small
width can be found.



General Result

Any problem with the following properties is fixed parameter
tractable:

▶ Let G = (V ,E ) a planar graph and k a number. Question:
Does there exist some S ⊆ V of size k with a certain property
(e.g. S is a vertex cover)?

▶ There is a constant c such that the distance between any
node and S is bounded by c .

▶ Given a tree decomposition of width w , the problem can can
be solved in f (w)nO(1) steps.

Special cases are Vertex Cover, Independent Set, and Dominating
Set.



Proof Idea

▶ Since any node is at most c steps away from a node in S ,
there is no path of length more than 2c |S |.

▶ Hence, the diameter is O(k), if there exists some S of size k .

▶ The treewidth of a planar graph with diameter d is at most
3d (without proof).

▶ If the diameter is larger than 2ck , the output is no.

▶ Otherwise, we obtain a tree decomposition of width 6ck and
can use it to solve the problem.



Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h



Dynamic Programming on a Tree Decomposition

General approach:

▶ The tree decomposition is transfered into a rooted tree: An
arbitrary node becomes the root. Children point to their
parents.

▶ A bag represents the subgraph induced by its children.

▶ For any bag a table is calculated, showing the optimal
solutions for its subgraphs.

▶ The children’s tables are calculated first.



Dynamic Programming on a Tree Decomposition
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Dynamic Programming on a Tree Decomposition
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{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2



Dynamic Programming on a Tree Decomposition
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{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3



Dynamic Programming on a Tree Decomposition
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Dynamic Programming on a Tree Decomposition
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Dynamic Programming on a Tree Decomposition
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Extended Monadic Second Order Graph Theory

We introduce a new logic called MSO-logic.

This logic contains variables for nodes, edges, sets of nodes, and
sets of edges.

There are the quantifiers ∃ and ∀ and operators ∧, ∨ and ¬.

Furthermore, the following relations are included:

u ∈ U, d ∈ D, inc(d , u), adj(u, v), · = ·

where u, v are node variables, d is an edge variable, U is a node
set variable, and D is an edge set variable.



Extended Monadic Second Order Graph Theory

A graph can either satisfy a formula or not. This allows for a
description of graph classes by formulas.

Example

Which graphs satisfy the following formula:

∃u∃v∃w(adj(u, v) ∧ adj(u,w) ∧ adj(v ,w))

Is there a formula describing bipartite graphs ?



Courcelle’s Theorem

Theorem
Let G be a graph class, described by a formula in MSO-logic.
The following proplem is fixed parameter tractable:

Input: Graph G with treewidth k
Parameter: k
Question: Does G belong to G

Proof
difficult. . .
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Courcelle’s Theorem

We could solve Vertex Cover parameterized by treewidth.

Using Courcelle’s Theorem, the size of the formula depends on the
size of the vertex cover, we are searching:

∃v1 . . . ∃vk∀e(inc(e, v1) ∨ · · · ∨ inc(e, vk)

Why is this a problem?



Courcelle’s Theorem (Extension)

We extend the MSO-logic:

We allow the following new quantifier:

minU ∀e∃u(u ∈ U ∧ inc(e, u))

Whenever the treewidth is bounded, a minimal set of nodes U,
satisfying an arbitrary MSO formula F (U), can be calculated in
polynomial time.



Courcelle’s Theorem (Extension)

Let G be a graph with vertex labels from {1, . . . , c}. The
corresponding sets of nodes are {V1, . . . ,Vc}.

We can express inclusion in Vi .

Example

maxU ⊆ V1∀x ∈ V2∃y(adj(x , y) ∨ y /∈ U)

(Is there a set U of red nodes such that any blue node has a
neighbor not belonging to U.)

This problem is called Red Blue Nonblocker.


