Statement 2

|V0|—|—2|C0| = ‘VOUCOUC(/)’

= |CB]
< |(V — 5/) U S¢| due to the lemma
=|V - 5|+ S|

=[VoU G Ul — (I — Si)| + |S¢]
= |Vo| + |Gol + |S1| + [Sc

It follows that |Co| < |S/| +|Sc| = |S| — |Sv| and thus
|G U Sy| < |S].



Statement 3

Claim: Every vertex cover of G[Vy] has size at least |Vp]/2.

Let Sp be an optimal vertex cover of G[Vo].

CoUCiUSeU S is a vertex cover of Gg, because Co U Sp is a
vertex cover of G.

‘V0| +2|Co‘ = |CB| < |COU C(,)USoUS(,)‘ :2‘Co| +2|50|

The claim follows.



Graph Properties

Definition
A graph property I1 is a class of graphs that is closed under graph
isomorphisms.

That is, if two graphs G; and G, are isomorphic, both belong to I
or both don't.



Graph Properties

Example

Connected graphs

Trees

Graphs containing a clique of size 100
Planar graphs

Regular graphs

vVvvyVvVvyypy

Finite graphs



Graph Properties

These are not graph properties:

» Graphs whose nodes are natural numbers
» Every nonempty finite set of graphs
» (For Logicians: Each set of graphs)



Hereditary Graph Properties

A graph property I1 is called hereditary if the following holds:

Let G € 1 and H be an induced subgraph of G.

Then H € I as well.

In other words: I1 is closed under taking induced subgraphs.



Hereditary Graph Properties

A graph property I1 is called hereditary if the following holds:

Let G € 1 and H be an induced subgraph of G.

Then H € I as well.

In other wor Questions:

1. Does the empty graph belong to every hereditary
graph property?

2. Are graph properties lattices with respect to the
induced subgraph relation?



Hereditary Graph Properties

Which graph properties are hereditary?

Bipartite graphs
Complete graphs
Planar graphs
Trees

Connected graphs

Graphs of diameter at most d

vVvvyVvYvVvyyvyy

Regular graphs



Hereditary Graph Properties

Which graph properties are hereditary?

Forests

Graphs containing an independent set of size 8
Graphs with at least 17 nodes

Graphs containing no matching of size 35
5-regular graphs

Infinite graphs

vVvvyVvYvVvyyvyy

Chordal graphs



Characterization by Obstruction Sets

Definition
A graph property I has a characterization by obstruction sets if
there is a graph property F such that G € I if and only if F does

not contain an induced subgraph of G.



Characterization by Obstruction Sets

Definition
A graph property I1 has a char: Question: if
there is a graph property F suc Does every hereditary graph does

not contain an induced subgray Property have a
characterization by

obstruction sets?



Characterization by Obstruction Sets

Definition
A graph property I1 has a char: Question: if
there is a graph property F suc Does every hereditary graph does

not contain an induced subgray Property have a
Answer:
Yes. Choose F = G — I with G

containing all graphs.



Finite Obstruction Sets

Definition
A graph property I has a finite characterization by obstruction
sets if it has a characterization by F, and F contains only a finite

number of non-isomorphic graphs.



Finite Obstruction Sets

Which graph properties have a finite characterization by
obstruction sets?

Graphs containing an independent set of size 77
Bipartite graphs?

Forests?

Planar graphs?

5-colorable graphs?

vVvyvyVvVvypy

Graphs containing a vertex cover of size k?



Finite Obstruction Sets

Which graph properties have a finite characterization by
obstruction sets?

Triangle-free graphs?
Graphs without any k-cliques?

>
>
» Graphs of diameter at most d?
» Cycle-free graphs?

>

Graphs not containing any cycle of length k7?7



Graph Modification Problems

Let I1 be a graph property. There are the following well-known
graph modification problems for an input G:

1. Edge Deletion Problem: Can we obtain a graph in I1 by
deleting k edges from G?

2. Node Deletion Problem: Can we obtain a graph in I1 by
deleting k nodes from G?

3. Node/Edge Deletion Problem: Can we obtain a graph in I1 by
deleting k nodes and / edges from G?

4. Edge Insertion Problem: Can we obtain a graph in I1 by
inserting k edges in G?



Generalization

Definition
M; j k-Graph Modification Problem

Input: A graph G = (V,E)

Parameter: i,j,k € N

Question: Can we obtain a graph in 1 by removing up to / nodes,
removing up to j edges, and inserting up to k edges in G?



The Leizhen Cai Theorem

Theorem
Let I be a graph property with a finite characterization by

obstruction sets.

Then the I; ; -Graph Modification Problem can be solved in
O(N+2+2k|G|N+1Y) steps and is thus fixed parameter tractable.
N is the number of nodes in the largest graph in the obstruction
set, i.e., a constant.



Proof of the Leizhen Cai Theorem

Lemma

Let N be a hereditary graph property that can be checked in T(G)
steps.

Then it takes O(|V|T(G)) many steps to find a minimal forbidden
induced subgraph for any G = (V,E) ¢ I1.

In this context, the term “minimal” refers to the order “induced
subgraph”.



Proof of the Leizhen Cai Theorem

Proof of the lemma:

Let V ={vi,...,vn}.

H=G
fori=1,...,ndo

if H—{v;} ¢ N then H:=H —{v;}
od

Upon termination, H is a minimal forbidden induced subgraph.



Proof of the Leizhen Cai Theorem
Input: G =(V,E)

Parameter: /,j,k € N
Question: G € IM;

while / + + k > 0 do
H := minimal forbidden induced subgraph of G
Modify G by removing an edge or node or by inserting
an edge from/in H
Leti:=i—1,j:=j—1,0r k:=k—1.
if G € I1 then answer

od

Answer NO



Proof of the Leizhen Cai Theorem

Running time:

Find H: O(|V|-|V|") according to the lemma

There are only N ways of removing a node from H

There are only (g’) ways of deleting or inserting an edge from/in H

Total running time

O(Ni+2j+2k | V| N+1).



Interleaving — Search Trees and Problem Kernels

In a search tree, the parameter decreases as it approaches the
leaves, whereas this is not necessarily the case for the size of the
instance (which could even grow).

If the expansion of a node in the search tree takes p(n) steps, then
the total running time becomes O(s(k, n)p(n)), where s(k, n)
denotes the size of the search tree.



Interleaving

The size of this graph never drops below n/2 within the entire
search tree of a vertex cover algorithm, provided that no reduction

to the problem kernel is performed.



Interleaving

The size of the parameter is reflected by the size of the red dots.
The recursion stops when the parameter is small. In the leaves, the
parameter is bounded by a constant.

Nearly all nodes are close to a leaf = nearly all nodes have a
small parameter.



Interleaving

If we perform a reduction to problem kernel after each expansion of
a node in the search tree, then the instances decrease in size as we
approach the leaves.

A more detailed analysis reveals that the total running time is only
O(s(n, k) + t(n) + r(n)) rather than O(s(n, k)t(n)), where r(n)
denotes the time required for the reduction to problem kernel.



Search Trees and Dynamic Programming

If all nodes are close to leaves and there are many of them, then
some must be identical.

—> We can improve the running time by computing the respective
solutions only once and storing them in a database.



Search Trees and Dynamic Programming

Example: Vertex Cover and the 2% algorithm

>
>

Each node of the search tree is an induced subgraph.
After a reduction to problem kernel, the size of a graph is
bounded by 2k’ from above if we are looking for a solution of
size k'. ok
There are at most O induced subgraphs of size at
most 2k’.

. . . * k*k/ k/ 2k .
The running time is O* | 2 +2 o if we store
solutions of size 2k’ in the database.
If we choose the value of k" optimally, the running time
becomes 1.886%.



