Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Both the $2 \times k$ grid and the k-circus graph contain a tree with k leaves.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Param Does the following statement hold? If a graph contains a tree with k leaves, Questi then it also contains a spanning tree with at least k leaves? at least k leaves.

Both the $2 \times k$ grid and the k-circus graph contain a tree with k leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Feedback Vertex Set:

Input: A graph G and a number k

Parameter: k

Question: Are there $\leq k$ nodes whose removal makes G acyclic?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem Feedback Vertex Set is fixed parameter tractable.

Feedback Vertex Set:

Input: A graph G and a number k

Parameter: k

Question: Are there $\leq k$ nodes whose removal makes G acyclic?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem Feedback Vertex Set is fixed parameter tractable.

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4k-circus graph: Remove the tip and check for a FVS of size k 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4k-circus graph: Remove the tip and check for a FVS of size k 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4*k*-circus graph: Remove the tip and check for a FVS of size k 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4k-circus graph: Remove the tip and check for a FVS of size k 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4*k*-circus graph: Remove the tip and check for a FVS of size k 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender's theorem.

- 1. Small tree decomposition: Courcelle
- 2. $2 \times 3k$ grid: No
- 3. 4*k*-circus graph: Remove the tip and check for a FVS of size k 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Classical complexity theory:

- ► Complexity classes *P*, *NP*, etc.
- ► Languages $L \in P$, $L \subseteq \Sigma^*$
- Framework insufficient for parameterized problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A parameterized problem over the alphabet Σ is a set of pairs (w, k), where $w \in \Sigma^*$ and $k \in \mathbb{N}$. It is not allowed that there exists w and $k \neq k'$ with $(w, k) \in L$ and $(w, k') \in L$, if L is a parameterized problem.

The second condition states that k is a function of w.

We like to state parameterized problems as follows:

Input: A graph G and a number k

Parameter: k

Question: Does G contain a clique of size k as a subgraph?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The parameter can be some arbitrary number, if it can be easily computed from the input.

Input: A graph G and a number k

Parameter: The diameter of G

Question: Does G contain a clique of size k as a subgraph?

Here it is easy to compute $(G, \Delta(G))$ from G in order to get formally a parameterized problem.

One goal of complexity theory is to categorize problems into easy and hard ones.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For this purpose P and NP are best known.

Others are:

- NC and L
- \blacktriangleright AC⁰ and NC¹
- ► EXPTIME and EXPSPACE

etc. etc.

In parameterized complexity theory the easy problems can be found in the class FPT.

Definition

The class *FPT* contains all parameterized problems that are fixed parameter tractable.

Formally: $L \in FPT$, if there is an algorithm solving $(w, k) \in L$ in at most $f(k)|w|^c$ steps, where c is a constant and $f: \mathbb{N} \to \mathbb{N}$ an arbitrary function.

A fundamental concept in complexity theory are reductions.

Important example: polynomial time many-one reductions:

 $g\colon \Sigma^* o \Sigma^*$ reduces the problem L_1 to L_2 , if

1.
$$w \in L_1 \iff g(w) \in L_2$$
.

2. g(w) can be computed in $|w|^{O(1)}$ steps.

Important property: If L_1 can be reduced to L_2 and $L_1 \notin P$, then $L_2 \notin P$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

"I can't find an efficient algorithm, but neither can all these famous people."

Important property: If L_1 can be reduced to L_2 and $L_1 \notin P$, then $L_2 \notin P$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Question: Is this reduction useful for parameterized problems?

- 1. $w \in L_1 \iff g(w) \in L_2$.
- 2. g(w) can be computed in $|w|^{O(1)}$ steps.

Does the corresping property hold?

If L_1 can be reduced to L_2 and $L_1 \notin FPT$, then $L_2 \notin FPT$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

That corresponding property does not hold:

```
We can map (w, k) to (w, |w|)!
```

If we reduce a problem to itself like this, we have $f(|w|)|w|^c$ steps instead of $f(|w|)|w|^c$ steps to compute a solution.

It that way we can solve every computable problem.

A polynomial time reduction is not fine grained enough.

Parameterized Reductions

Definition

A parameterized problem $L_1 \subseteq \Sigma^*$ can be reduced to $L_2 \subseteq \Gamma^*$ by a parameterized reduction if

- ▶ $r, s: \mathbf{N} \to \mathbf{N}$ are computable functions,
- ► there is a function $g: \Sigma^* \times \mathbf{N} \to \Gamma^*$, $(w, k) \mapsto (w', k')$, that can be computed in $r(k)|w|^{O(1)}$ steps and k' = s(k),

• $(w,k) \in L_1$ if and only if $g(w,k) \in L_2$.

Parameterized Reductions

Theorem

If $L_1 \notin FPT$ and there is a parameterized reduction from L_1 to L_2 , then $L_2 \notin FPT$.

Proof

Assume $L_2 \in FPT$. We can computed (w', k') = g(w, k) in $r(k)|w|^c$ steps such that k' = s(k) and $|w'| \le r(k)|w|^c$. Then test whether $(w', k') \in L_2$ taking $f'(k')|w'|^d \le f'(s(k))r(k)^d|w|^{cd}$ steps. Because $(w, k) \in L_1 \iff (w', k') \in L_2$, we answered whether $(w, k) \in L_1$ holds and therefore $L_1 \in FPT$.

Look at some classical reductions:

- Vertex Cover to Independent Set
- CNF-SAT to 3SAT (weighted)
- Clique to Independent Set

Classical reductions are usually not parameterized reductions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00