
Application 1

Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Does the following statement hold?
If a graph contains a tree with k leaves,
then it also contains a spanning tree with
at least k leaves.

Both the 2× k grid and the k-circus graph contain a tree with k
leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.
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Application 2

Feedback Vertex Set:

Input: A graph G and a number k

Parameter: k

Question: Are there ≤ k nodes whose removal makes G acyclic?

Theorem
Feedback Vertex Set is fixed parameter tractable.
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Feedback Vertex Set

Theorem
Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.
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Parameterized Complexity Theory

Classical complexity theory:

▶ Complexity classes P, NP, etc.

▶ Languages L ∈ P, L ⊆ Σ∗

▶ Framework insufficient for parameterized problems



Parameterized Complexity Theory

Definition
A parameterized problem over the alphabet Σ is a set of pairs
(w , k), where w ∈ Σ∗ and k ∈ N.
It is not allowed that there exists w and k ̸= k ′ with (w , k) ∈ L
and (w , k ′) ∈ L, if L is a parameterized problem.

The second condition states that k is a function of w .



Parameterized Complexity Theoery

We like to state parameterized problems as follows:

Input: A graph G and a number k

Parameter: k

Question: Does G contain a clique of size k as a subgraph?



Parameterized Complexity Theory

The parameter can be some arbitrary number, if it can be easily
computed from the input.

Input: A graph G and a number k

Parameter: The diameter of G

Question: Does G contain a clique of size k as a subgraph?

Here it is easy to compute (G ,∆(G )) from G in order to get
formally a parameterized problem.



Parameterized Complexity Theory

One goal of complexity theory is to categorize problems into easy
and hard ones.

For this purpose P and NP are best known.

Others are:

▶ NC and L

▶ AC 0 and NC 1

▶ EXPTIME and EXPSPACE

▶ etc. etc.



Parameterized Complexity Theory

In parameterized complexity theory the easy problems can be found
in the class FPT .

Definition
The class FPT contains all parameterized problems that are fixed
parameter tractable.

Formally: L ∈ FPT , if there is an algorithm solving (w , k) ∈ L in
at most f (k)|w |c steps, where c is a constant and f : N → N an
arbitrary function.



Parameterized Complexity Theory

A fundamental concept in complexity theory are reductions.

Important example: polynomial time many-one reductions:

g : Σ∗ → Σ∗ reduces the problem L1 to L2, if

1. w ∈ L1 ⇐⇒ g(w) ∈ L2.

2. g(w) can be computed in |w |O(1) steps.

Important property: If L1 can be reduced to L2 and L1 /∈ P, then
L2 /∈ P.
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Parameterized Complexity Theory

Question: Is this reduction useful for parameterized problems?

1. w ∈ L1 ⇐⇒ g(w) ∈ L2.

2. g(w) can be computed in |w |O(1) steps.

Does the corresping property hold?

If L1 can be reduced to L2 and L1 /∈ FPT , then L2 /∈ FPT .



Parameterized Complexity Theory

That corresponding property does not hold:

We can map (w , k) to (w , |w |)!

If we reduce a problem to itself like this, we have f (|w |)|w |c steps
instead of f (|w |)|w |c steps to compute a solution.

It that way we can solve every computable problem.

A polynomial time reduction is not fine grained enough.



Parameterized Reductions

Definition
A parameterized problem L1 ⊆ Σ∗ can be reduced to L2 ⊆ Γ∗ by a
parameterized reduction if

▶ r , s : N → N are computable functions,

▶ there is a function g : Σ∗ ×N → Γ∗, (w , k) 7→ (w ′, k ′), that
can be computed in r(k)|w |O(1) steps and k ′ = s(k),

▶ (w , k) ∈ L1 if and only if g(w , k) ∈ L2.



Parameterized Reductions

Theorem
If L1 /∈ FPT and there is a parameterized reduction from L1 to L2,
then L2 /∈ FPT.

Proof
Assume L2 ∈ FPT . We can computed (w ′, k ′) = g(w , k) in
r(k)|w |c steps such that k ′ = s(k) and |w ′| ≤ r(k)|w |c .
Then test whether (w ′, k ′) ∈ L2 taking
f ′(k ′)|w ′|d ≤ f ′(s(k))r(k)d |w |cd steps.
Because (w , k) ∈ L1 ⇐⇒ (w ′, k ′) ∈ L2, we answered whether
(w , k) ∈ L1 holds and therefore L1 ∈ FPT .



Parameterized Reductions

Look at some classical reductions:

▶ Vertex Cover to Independent Set

▶ CNF-SAT to 3SAT (weighted)

▶ Clique to Independent Set

Classical reductions are usually not parameterized reductions.


