
Treewidth and Courcelle’s Theorem

A minor of a graph G is a graph obtained from G by contraction
of edges and removal of nodes and edges.

Lemma
Any planar graph is a minor of a grid.

Proof
Simple. For example by Induction.
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Theorem
Let H be a finite, planar graph and G a class of graphs, not
containing H as a minor.
Then there is a constant cH , such that the treewidth of any graph
in G is at most cH .

Proof
very difficult and long
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Corollary

“A graph with large treewidth contains a large grid”:

If tw(G ) > t then G contains the grid Qf (t) as minor, where f is
a monotone, unbounded function.

Proof

direct consequence of the last theorem
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Example

Input: A planar graph G and k pairs (si , ti ) of nodes from G .
(Parameter is k)

Question: Are there edge disjoint paths connecting each si with ti?

The problem belongs to FPT:

If the treewidth is small, we can apply Courcelle’s Theorem.

If the treewidth is large, a large grid is contained as a minor.
Removing a node from this grid does not “harm” this structure.



Color Coding

Problem: Does a given graph contain a cycle of length k?

This problem is NP-complete, because Hamilton Cycle is a special
case.

Question: Is it fixed parameter tractable?



Color Coding

Algorithm:

1. Randomly color each node in one of k colors

2. Check for a colorful cycle of length k , i.e., a cycle in which no
two nodes have the same color

Analysis:

The probability that a cycle of length k becomes colorful is

k!/kk ∼
√
2πk e−k .
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The cycle is colorful with probability 4!/44 = 3/32.
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After using the above algorithm to find a cycle of length k for N
times, the probability that it failed to detect a cycle every time is(

1− k!

kk

)N

.

Letting N = Mkk/k! ∼ Mek/
√
k yields(

1− M

N

)N

∼ e−M .

This failure probability can be made arbitrarily small by the choice
of M.



Color Coding

A question remains:

How do you check for a colorful cycle?
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Answer:

Create a table P(u, v , l).

P(u, v , l) contains all sets of pairwise distinct nodes that
constitute a path from u to v of length l .

P(u, v , l) can be computed from P(u, v , l − 1).

Time required: 2k · poly(n)



Color Coding

Definition
A k-perfect family of hash functions is a family F of functions
{1, . . . , n} → {1, . . . , k} such that for every S ⊆ {1, . . . , n} with
|S | = k there exists an f ∈ F that is bijective when restricted to S .

Let us first assume we had such a family of perfect hash
functions. . .
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Deterministic algorithm:

▶ Color the graph using each f ∈ F .

▶ For each coloring, check for a colorful cycle of length k.

This algorithm works if we can construct a k-perfect family of hash
functions.

This algorithm is fast if the family is small, can be expressed in
little space, and its functions can be evaluated quickly.
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Fortunately, there are k-perfect families of hash functions
consisting of no more than O(1)k log n functions.

They can be stored compactly.

They can be evaluated quickly: Each f (i) can be computed fast.

That is, there is a deterministic FPT algorithm for finding cycles of
length k .


