
Lower bounds for hard problems
k-clique (and k-independent set) cannot be solved in f (k)no(k)

steps for any computable f .

Proof idea: Assume otherwise and let, e.g., f (k) = 2k .

Then choose k = log n (or, in general k = f −1(n).

Split a graph G with n vertices into k groups of almost same size.

Build a new graph H whose vertices are valid 3-colorings of the
groups. There is an edge between two vertices if their colorings are
compatible.

The size of H is at most N = k3n/k . H has a k-clique iff G is
3-colorable.

Find such a clique in time No(k) = (k3n/k)o(k) = 2o(n).

We can therefore find out whether G is 3-colorable in time 2o(n).
Contradiction.

The Strong Exponential Time Hypothesis (SETH)

Let δr be the infimum of all δ′r for which an algorithm exists that
solves r -SAT in time O(2δ′

rn).

ETH: δ3 > 0

SETH: limr→∞ δr = 1

SETH implies ETH. (why?)

ETH implies W[1] 6= FPT. (why?)

The faith into SETH is smaller than into ETH.

There are fewer results for SETH than for ETH.

Lower bound for algorithms on tree decompositions

We have seen that Independent Set can be solved in time 2knO(1)

if the input is a tree decomposition of width k .

Under SETH we cannot solve this problem in time (2− ε)knO(1)

for any ε > 0.

Proof idea: For a given CNF-SAT formula φ with n variables and
m clauses construct a graph G with path-width n + 3 and size
O(n3m).

G has an independent set of a given size iff φ is satifiable.

If we can find a maximal independent set in time (2− ε)n+3|G |O(1),
then we solve CNF-SAT in time (2− ε)n|φ|O(1) and SETH fails.

Connect gadget for every clause.

One connection has to go to an empty vertex.

Repeat n + 1 times to avoid cheating.

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Problems on Random Graphs

Spanning trees

1. Minimum weight spanning tree → polynomial time
2. Maximum leaf spanning tree → NP-complete

Spanning trees

optimal?

1. Minimum weight spanning tree → polynomial time
2. Maximum leaf spanning tree → NP-complete

Spanning trees

optimal!

1. Minimum weight spanning tree → polynomial time
2. Maximum leaf spanning tree → NP-complete

Maximum Leaf Spanning Trees

We consider this problem:

I Input: An undirected graph G and a number k
I Question: Does G contain a spanning tree with at least k

leaves?

Applications: Operations research, network design

A simpler problem

How to turn a k-leaf tree into a k-leaf spanning tree:

A simpler problem

How to turn a k-leaf tree into a k-leaf spanning tree:

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993
(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006
6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Directed Graphs

Directed Maximum Leaf Out-Tree (DMLOT) problem:

I Input: A directed graph G and a number k
I Question: Does G contain an out-tree with at least k leaves?

Directed Maximum Leaf Spanning Tree (DMLST) problem:

I Input: A directed graph G and a number k
I Question: Does G contain an out-tree with at least k leaves

that spans all nodes?

Directed Graphs

Directed Maximum Leaf Out-Tree (DMLOT) problem:

I Input: A directed graph G and a number k
I Question: Does G contain an out-tree with at least k leaves?

Directed Maximum Leaf Spanning Tree (DMLST) problem:

I Input: A directed graph G and a number k
I Question: Does G contain an out-tree with at least k leaves

that spans all nodes?

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, ICALP 2007

Theorem
G has either a k-leaf out-tree or its pathwidth is bounded by 2k2.

We call this a win-win scenario.

→ solve DMLOT in time ck
3 log knO(1).

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, ICALP 2007

Theorem
G has either a k-leaf out-tree or its pathwidth is bounded by 2k2.

We call this a win-win scenario.

→ solve DMLOT in time ck
3 log knO(1).

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, FST&TCS 2007

Some improvements by the same authors:

DMLOT in ck
2 log knO(1) time

DMLOT in ck log knO(1) time for acyclic graphs

(Improved bounds on the pathwidth.)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

A simple algorithm to find k-leaf trees
Idea: Start at some node and grow a tree.

Run the following algorithms on all nodes v :

I mark v blue.
I Repeat:

Choose a blue leaf u.

(a) Mark it red
OR
(b) Connect u’s outside neighbors to u and mark them blue

if the tree has ≥ k leaves, then answer YES
if there is no blue leaf, answer NO

(Outside neighbor: Neighbor that is not yet in the tree)

A simple algorithm to find k-leaf trees
Idea: Start at some node and grow a tree.

Run the following algorithms on all nodes v :

I mark v blue.
I Repeat:

Choose a blue leaf u.

(a) Mark it red
OR
(b) Connect u’s outside neighbors to u and mark them blue
(if deg(u) = 1 follow the path)

if the tree has ≥ k leaves, then answer YES
if there is no blue leaf, answer NO

(Outside neighbor: Neighbor that is not yet in the tree)

Example

I We grow a tree.
I A blue leaf can be expanded.
I A red leaf remains a leaf.

Example

I We grow a tree.
I A blue leaf can be expanded.
I A red leaf remains a leaf.

Example

I We grow a tree.
I A blue leaf can be expanded.
I A red leaf remains a leaf.

Example

I We grow a tree.
I A blue leaf can be expanded.
I A red leaf remains a leaf.

Example

I We grow a tree.
I A blue leaf can be expanded.
I A red leaf remains a leaf.

We can’t grow every tree

Is the algorithm correct?

Correctness
Theorem
If there is a k-leaf tree, the algorithm finds some k-leaf tree.

Proof: Modify a k-leaf spanning tree.

This theorem holds for directed graphs, too ⇒ DMLOT.

Correctness
Theorem
If there is a k-leaf tree, the algorithm finds some k-leaf tree.

Proof: Modify a k-leaf spanning tree.

This theorem holds for directed graphs, too ⇒ DMLOT.

A very useful theorem
Theorem
Let G contain a directed spanning tree with root r .
Then every out-tree with root r can be extended into a spanning
tree.

Proof
Use the spanning tree to extend the out-tree.

x1 x1 x1

⇒ the algorithm solves DMLST, too.

Running time (FPT)
In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.
I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)
In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.
I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)
In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.
I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)
In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.
I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)
In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.
I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Adding Recursion to Color-Coding

Idea:

1. Randomly color G in black and white.
2. Recursively check for a black dk/2e-node path and a white
bk/2c-node path that combine to form a k-node path in G .

1

2 3
4

5

6
7

8 9

10 11

Adding Recursion to Color-Coding

Idea:

1. Randomly color G in black and white.
2. Recursively check for a black dk/2e-node path and a white
bk/2c-node path that combine to form a k-node path in G .

1

2 3
4

5

6
7

8 9

10 11

The Algorithm for Longest Path

Crucial details:

1. Try 3 · 2k colorings in each call.
2. Return all the (u, v) ∈ V 2 with u

k−→ v that were found.
1

2 3
4

5

6
7

8 9

10 11

Combine black (u, x) and white (y , v) into new (u, v) if {x , y} ∈ E

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k .

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2 ·2

k+1 ≤ e−
3
2 <

1
4 .

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k .

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2 ·2

k+1 ≤ e−
3
2 <

1
4 .

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k .

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2 ·2

k+1 ≤ e−
3
2 <

1
4 .

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

Divide-and-Color for Packing Problems

H-Graph Packing K1,3-Packing

Divide-and-Color for Packing Problems

H-Graph Edge-Packing Edge-Disj. Triangle Packing

Summary: Randomized Divide-and-Color

Graph Problem Runtime Bound

Longest Path O∗(4k)

H-Graph Packing O∗(22(h−1)k), h := |V [H]|

H-Graph Edge-Packing O∗(22(h−1)k), h := |E [H]|

Edge-Disjoint Triangle Packing O∗(24k)

K1,s -Packing O∗(22sk)

. . . with exponentially small error probability.

Kernelization on sparse graph classes

I Framework for planar graphs

Guo and Niedermeier: Linear problem kernels for NP-hard

problems on planar graphs

I Meta-result for graphs of bounded genus

Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and

Thilikos: (Meta) Kernelization

I Meta-result for graphs excluding a fixed graph as a minor

Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality

and kernels

I Here: Meta-result for graphs excluding a fixed graph as a

topological minor

FPT algorithms for F -Deletion
The F-Deletion problem:

Input: A graph G , an integer k

Question: Is there a set X ⊆ V (G) of size at most k such that

G − X contains no graph from F as a minor?

I Many special results, e.g. F = {K4}
I F contains a planar graph: FPT by Robertson-Seymour

Fellows and Langston: Nonconstructive tools for proving

polynomial-time decidability
I 2O(k log k)n2-Algorithm for Planar-F-Deletion, later improved

to 2O(k)n2 if F contains only connected graphs

Fomin, Lokshtanov, Misra and Saurabh: Nearly optimal FPT

algorithms for Planar-F-Deletion / Planar-F-Deletion:

Approximation and Optimal FPT Algorithms
I Here: a 2O(k)n2 algorithm for Planar-F-Deletion even if F

contains disconnected graphs

Protrusion

Definition
X ⊆ V (G) is a t-protrusion if

1. |∂(X)| = |N(X) \ X | ≤ t (small boundary)
2. tw(G [X]) ≤ t (small treewidth)

Protrusion replacement

I We want to replace a large protrusion by something smaller

I Possible if problem has finite integer index

I Recursive structure of graphs of small treewidth (i.e.

protrusion) helps

I Lots of technicalities omitted. . .

Minors, top-minors

Graphs excluding a fixed Minor/Top-Minor:

I d-degenerate (d depends on the excluded graph)

I closed under taking minors/top-minors

⇒ every minor/top-minor also d-degenerate

Minors, top-minors

Graphs excluding a fixed Minor/Top-Minor:

I d-degenerate (d depends on the excluded graph)

I closed under taking minors/top-minors

⇒ every minor/top-minor also d-degenerate

Protrusion decomposition

(α, t)-Protrusion decomposition is a partition

V = Y0] Y1] · · ·] Y` such that:

1. for 1 ≤ i ≤ `, N(Yi) ⊆ Y0

2. ` ≤ α and |Y0| ≤ α

3. for 1 ≤ i ≤ `, Yi ∪ N(Yi) is a t-protrusion

...in H-topological minor free graphs

Lemma
Let G exclude H as a topological minor and let X ⊆ V (G) be such
that tw(G − X) ≤ t. Then G has a (O(|X |), 2t + |H|)-protrusion
decomposition.

I Can be computed in linear time if X is given

I X is called a treewidth-t modulator

Proof sketch

I Given X such that tw(G − X) ≤ t

I Group components of G − X by respective neighbourhood in

X and obtain Y1, . . . ,Y`

Proof sketch

I From bottom up, mark bags whose subtree induces

component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can

construct K|H| and thus H as a top. minor
I Mark LCA bags also

Proof sketch

I From bottom up, mark bags whose subtree induces

component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can

construct K|H| and thus H as a top. minor
I Mark LCA bags also

Proof sketch

I From bottom up, mark bags whose subtree induces

component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can

construct K|H| and thus H as a top. minor
I Mark LCA bags also

Proof sketch

I Add content of bags to X to obtain Y0, by previous

observations |Y0| = O(|X |)
I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for

1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

Proof sketch

I Add content of bags to X to obtain Y0, by previous

observations |Y0| = O(|X |)
I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for

1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

Proof sketch

I Add content of bags to X to obtain Y0, by previous

observations |Y0| = O(|X |)
I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for

1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

The theorem
Theorem
Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,

(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,

Edge Dominating Set, Connected Vertex Cover

The theorem
Theorem
Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,

(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,

Edge Dominating Set, Connected Vertex Cover

The theorem
Theorem
Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,

(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,

Edge Dominating Set, Connected Vertex Cover

The theorem
Theorem
Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,

(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,

Edge Dominating Set, Connected Vertex Cover

Treewidth-bounding?

Planar “Distance-property”

Bounded Genus Quasi-compact

H-Minor-Free

H-Topological-
Minor-Free

Treewidth-bounding

Bidimensional
+ separation property

Ealier properties imply treewidth-bounding!

Treewidth-bounding?

Planar “Distance-property”

Bounded Genus Quasi-compact

H-Minor-Free

H-Topological-
Minor-Free

Treewidth-bounding

Bidimensional
+ separation property

Ealier properties imply treewidth-bounding!

Proof idea

I Problem is treewidth-bounding: there exists a

treewidth-t-modulator (if it is a yes-instance)

I Exhaustively reduce all (2t + |H|)-protrusions in polynomial

time

⇒ Every such protrusion has now constant size
I There exists a (O(|X |), 2t + |H|)-protusion-decomposition:

only need to bound number of clusters ` (idea: too many would

create an |H| as a topological minor)

The theorem

Planar-F-Deletion:

Input: A graph G , an integer k

Problem: Is there a set X ⊆ V (G) of size at most k such that

G − X contains no graph from F as a minor?

Theorem
Let F be a fixed finite family of graphs containing at least one
planar graph. There exists an algorithm to solve Planar-F-Deletion
in time 2O(k) · n2.

Considerations

I No finite state property, because F can contain disconnected

graphs

⇒ Protrusion reduction not possible!

I As F contains a planar graph, a solution X will fullfill

tw(G − X) ≤ t for some constant t

⇒ Use iterative compression to have solution X ′ that works as a

treewdith modulator

I But: We are working on general graphs! Bounds for

H-(topological)-minor-free graphs do not apply!

Algorithm outline
From iterative compression: got solution X , |X | ≤ k + 1 and want

disjoint solution X̃ , |X̃ | ≤ k.

I Given X , obtain (|X |, t)-protrusion-decomposition

Y0] Y1] · · ·] Y`, where t depends on F

I Guess intersections I of X̃ with Y0 (in time 2O(k))

I New solution X̃ can intersect at most ≤ k clusters

⇒ Disregarding those ≤ k clusters, G − I is H-minor-free!

⇒ ` = O(k) or we have a no-instance

Using a the finite state property of solutions sets inside the

protrusions we can enumerate all necessary vertex sets in 2O(k)

time (quite technical)

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Problems on Random Graphs

Random Graphs

Erdős–Rényi graph G (n, 1/2): Every edge has probability 1/2

Random Graphs
Random graphs have interesting properties

I many hard problems become easy

I zero-one laws

I hard to prove that hard problems are hard

Overview of this section

I Dominating Set as hard as FO-model checking on G (n, 1/2)

I Complexity does not change for G (n, p) for rational p

I Finding k-rows whose AND is the zero vector also hard

I Finding k-rows whose XOR is the zero vector is easy

(the Even Set problem)

Finding Triangles is Easy

The best algorithm in the worst-case:

O(nω) to test for a triangle

What is the running time for G (n, 1/2)?

To be more precise: The average running time?

Answer:

The average running time is O(1).

Reason: Abundance of witnesses.

Finding Triangles is Easy

The best algorithm in the worst-case:

O(nω) to test for a triangle

What is the running time for G (n, 1/2)?

To be more precise: The average running time?

Answer:

The average running time is O(1).

Reason: Abundance of witnesses.

Finding Triangles is Easy

The best algorithm in the worst-case:

O(nω) to test for a triangle

What is the running time for G (n, 1/2)?

To be more precise: The average running time?

Answer:

The average running time is O(1).

Reason: Abundance of witnesses.

Finding Cliques is Easy

Finding a k-clique:

NP-complete in the worst case.

Quasipolynomial time on average.

Parameterized complexity:

W[1]-complete, cannot be solved in no(k) under ETH.

FPT on average [Founoulakis, Friedrich, Hermelin].

Finding Cliques is Easy

Finding a k-clique:

NP-complete in the worst case.

Quasipolynomial time on average.

Parameterized complexity:

W[1]-complete, cannot be solved in no(k) under ETH.

FPT on average [Founoulakis, Friedrich, Hermelin].

First-Order Logic on Graphs
Many problems can be expressed using logic.

Quantification over vertices ∃, ∀, adjacency ∼,

equality =, and ∧, or ∨, not ¬.

A graph G contains a k-clique iff

G |= ∃x1∃x2 . . . ∃xk
∧
i 6=j

xi ∼ xj ,

a dominating set of size k iff

G |= ∃x1∃x2 . . . ∃xk∀y
∨
i

(
xi ∼ y ∨ xi = y

)
.

First-Order Logic on Graphs
Many problems can be expressed using logic.

Quantification over vertices ∃, ∀, adjacency ∼,

equality =, and ∧, or ∨, not ¬.

A graph G contains a k-clique iff

G |= ∃x1∃x2 . . . ∃xk
∧
i 6=j

xi ∼ xj ,

a dominating set of size k iff

G |= ∃x1∃x2 . . . ∃xk∀y
∨
i

(
xi ∼ y ∨ xi = y

)
.

First-Order Logic on Graphs
Many problems can be expressed using logic.

Quantification over vertices ∃, ∀, adjacency ∼,

equality =, and ∧, or ∨, not ¬.

A graph G contains a k-clique iff

G |= ∃x1∃x2 . . . ∃xk
∧
i 6=j

xi ∼ xj ,

a dominating set of size k iff

G |= ∃x1∃x2 . . . ∃xk∀y
∨
i

(
xi ∼ y ∨ xi = y

)
.

Main result: Problems that are equivalent on average
p-Dominating Set

Input: A graph G and k ∈ N.

Parameter: k

Problem: Is there a dominating set of size ≤ k for G?

p-Matrix(∧)

Input: A boolean matrix M ∈ {0, 1}n×n and k ∈ N.

Parameter: k

Problem: Are there k rows in M whose logical AND

is the zero vector?

p-MC(FO)

Input: A first-order sentence φ and a graph G

Parameter: |φ|, the length of φ

Problem: Does φ hold in G , i.e., G |= φ?

Proof outline
Solving p-Dominating Set on G (n, 1/2)y Lemma ??

Solving p-Matrix(∧) on uniformly distributed square matricesy Lemma ??

Solving (G , χ) |= φ′′ on G (n, 1/2)y Lemma ??

Solving (G , χ) |= φ′ on G (n, 1/2)y Lemma ??

Solving G |= φ on G (n, 1/2)y Lemma ??

Solving the FO-model checking problem on G (n, 1/2)y subproblem

Solving p-Dominating Set in G (n, 1/2)

p-Dominating Set→ p-Matrix(∧)
“Are there k rows in M whose logical AND is the zero vector?”

“Are there k rows in M̄ whose logical OR is the one vector?”

Is there a directed dominating set in the graph with adjacency

matrix M̄?

p-Dominating Set→ p-Matrix(∧)
“Are there k rows whose logical OR is the one vector?”

Without loss of generality:

Search only in the upper part.

(Idea: Apply a family of magic row permutations)

p-Dominating Set→ p-Matrix(∧)
“Are there k rows in M̄ whose logical OR is the one vector?”

M̄ =
(
A B C D E

)
Construct an undirected graph G = (V ,E) with adjacency matrix

M ′ =

 A′ B CT

BT A′′ D
C DT E ′


A′, A′′, E ′ are symmetric, build from A and E .

1. If M is random, then G is a random graph.

2. If M contains k rows whose logical OR is 1, then M ′

contains 3k such rows.

3. That means that G has dominating set of size 3k .

Algorithm: Find out if G contains a dominating set of size 3k .

If not, then the answer is “no.”

If it does, run a slow algorithm for p-Matrix(∧).

Proof outline
Solving p-Dominating Set on G (n, 1/2)y Lemma ??

Solving p-Matrix(∧) on uniformly distributed square matricesy Lemma ??

Solving (G , χ) |= φ′′ on G (n, 1/2)y Lemma ??

Solving (G , χ) |= φ′ on G (n, 1/2)y Lemma ??

Solving G |= φ on G (n, 1/2)y Lemma ??

Solving the FO-model checking problem on G (n, 1/2)y subproblem

Solving p-Dominating Set in G (n, 1/2)

Three special FO-formulas
A vertex u can have a color χ(u).

φ ≡ ∀x̄∀ȳ∃z
(k∧
i ,j=1

xi 6= yj →
k∧

i=1
(xi ∼ z ∧ yi 6∼ z)

)

φ′ ≡ ∀x̄∀ȳ∃z
(k∧

i=1

(
χ(xi) = black ∧ χ(yi) = white

)
→ χ(z) = gray ∧

k∧
i=1

(xi ∼ z ∧ yi 6∼ z)
)

φ′′ ≡ ∀x̄∀ȳ∃z
(k∧

i=1

(
χ(xi) = black ∧ χ(yi) = white

)
→ χ(z) = gray ∧

k∧
i=1

(xi 6∼ z ∧ yi 6∼ z)
)

φ′′ φ′

Flip edges between gray and black vertices.

¬φ′: Are there k black and k white vertices such that every gray

vertex is adjacent to a black or non-adjacent to a white vertex.

¬φ′′: Are there k black and k white vertices such that every gray

vertex is adjacent to a black or adjacent to a white vertex.

φ′′ φ′

Flip edges between gray and black vertices.

¬φ′: Are there k black and k white vertices such that every gray

vertex is adjacent to a black or non-adjacent to a white vertex.

φ: “Can I always find vertices that attach in every possible way to

a given group of k vertices?” Extension Axioms

Zero-One Laws
Famous result about random graphs:

Let ψ be an arbitrary FO-sentence. Then

lim
n→∞

Pr[G (n, 1/2) |= ψ] ∈ {0, 1}.

One ingredient in the proof:

Let Φ be the extension axioms, i.e.,

∀x̄∀ȳ∃z
(k∧
i ,j=1

xi 6= yj →
k∧

i=1
(xi ∼ z ∧ yi 6∼ z)

)
.

Then Φ |= ψ or Φ |= ¬ψ.

Zero-One Laws
Let ψ be an arbitrary FO-sentence. Then

lim
n→∞

Pr[G (n, 1/2) |= ψ] ∈ {0, 1}.

Given ψ it is PSPACE-complete to decide what the limit is

[Etienne Grandjean, 1983].

We can solve p-MC(FO) using p-Dominating Set as follows

1. Enumerate all possible proofs Φ′ ` ψ and Φ′ ` ¬ψ for growing

Φ′ ⊂ Φ until you find a valid one.

2. Then find out if G |= Φ′.

3. If yes, we know the answer.

4. If no, run a slow n|ψ| algorithm.

Proof outline
Solving p-Dominating Set on G (n, 1/2)y*

Solving p-Matrix(∧) on uniformly distributed square matricesy*

Solving (G , χ) |= φ′′ on G (n, 1/2)y*

Solving (G , χ) |= φ′ on G (n, 1/2)y*

Solving G |= φ on G (n, 1/2)y*

Solving the FO-model checking problem on G (n, 1/2)y*

Solving p-Dominating Set in G (n, 1/2)

Probabilities other than 1/2

The results do not depend on the probability 1/2.

Theorem
Let 0 < p, q < 1, p, q ∈ Q.
p-MC(FO) can be solved on G (n, p) in expected FPT time iff
p-Dominating Set can be solved on G (n, q) in expected FPT
time.

The proof uses some dirty tricks.

E.g.: We average the running time over all possible inputs.

We can use parts of the input as “random bits” to derandomize a

randomized algorithm.

Average complexity of Even Set
One way to define Even Set is this:

p-Even Set

Input: A boolean matrix M ∈ {0, 1}n×n and k ∈ N.

Parameter: k

Problem: Are there k rows in M whose logical XOR

is the zero vector?

p-Even Set is famous because its complexity was unknown for a

long time.

Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin,

Manurangsi, and Marx showed recently that p-Even Set is

W[1]-hard under randomized fpt-reductions.

Average complexity of Even Set

While p-Matrix(∧) is as hard as p-MC(FO) on average, we get:

Theorem
p-Even Set can be solved in FPT on average.

Proof:
I reduce to rectangular matrix
I compute the rank in F2
I if full rank, answer is no
I otherwise solve in nO(k)

Conclusion
I Worst-case complexity:

p-Clique, p-Dominating Set, p-MC(FO) increasingly

hard
I Average-case complexity:

p-Clique easy, p-Dominating Set, p-MC(FO) equally

hard
I Worst-case complexity:

p-Even Set and p-Matrix(∧) hard
I Average-case complexity:

p-Even Set easy, p-Matrix(∧) as hard as p-MC(FO)

Big open question:

Can we relate hardness on average to hardness in the worst-case?

Results known for unusual probability distributions.

