
A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑
S ,T⊆P,|S|,|T |≤s

(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑
S ,T⊆P,|S|,|T |≤s

(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑
S ,T⊆P,|S|,|T |≤s

(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

Definition
Multicolored Clique is the following problem:
Input: A Graph G , nodes colored by k colors
Parameter: k
Question: Is there a k-clique with k colors?

Theorem
Multicolored Clique is W [1]-hard.

Definition
List Coloring (parameterized by treewidth) is the following problem:
Input: A Graph G , nodes have lists of colors
Parameter: treewidth of G
Question: Is there a node coloring with colors from the lists?

Theorem
tw–List Coloring is W [1]-hard.

Definition
Multicolored Grid is the following problem:
Input: A Graph G , nodes colored by {(i , j) | 1 ≤ i , j ≤ k}.
Parameter: k
Question: Is there a k × k-grid whose node at coordinates (i , j) is
colored with (i , j)?

Theorem
Multicolored Grid is W [1]-hard.

Theorem
List coloring is W [1]-hard with parameter treewidth even for planar
graphs.

Definition
An OR-distillation algorithm for a problem L is an algorithm that
transforms (v1, . . . , vt) into w with these properties:

1. runs in polynomial time

2. w ∈ L iff some vi ∈ L

3. |w | polynomially bounded in |vi | for all i

For which problems L do distillation algorithms exist?

Theorem
If an OR-distillation algorithm for an NP-complete problem exists,
then coNP ⊆ NP/poly .

Definition
An OR-distillation algorithm for a problem L is an algorithm that
transforms (v1, . . . , vt) into w with these properties:

1. runs in polynomial time

2. w ∈ L iff some vi ∈ L

3. |w | polynomially bounded in |vi | for all i

For which problems L do distillation algorithms exist?

Theorem
If an OR-distillation algorithm for an NP-complete problem exists,
then coNP ⊆ NP/poly .

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), . . . , (vt , k)) into (w , k ′) with
these properties:

1. runs in polynomial time

2. (w , k ′) ∈ L iff some (vi , k) ∈ L

3. k ′ polynomially bounded in k

Theorem
Let L be an NP-complete parameterized problem (where the
parameter is encoded in unary as part of the input). If there is an
OR-composition algorithm for L and L has a polynomial kernel,
then there is also an OR-distillation algorithm for L.

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), . . . , (vt , k)) into (w , k ′) with
these properties:

1. runs in polynomial time

2. (w , k ′) ∈ L iff some (vi , k) ∈ L

3. k ′ polynomially bounded in k

Theorem
Let L be an NP-complete parameterized problem (where the
parameter is encoded in unary as part of the input). If there is an
OR-composition algorithm for L and L has a polynomial kernel,
then there is also an OR-distillation algorithm for L.

Theorem
If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have OR-composition algorithms:

▶ k-path

▶ k-cycle

Theorem
If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have OR-composition algorithms:

▶ k-path

▶ k-cycle

A similar framework exists for AND-composition and
AND-distillation.

Theorem
If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have AND-composition algorithms:

▶ treewidth

▶ pathwidth

A similar framework exists for AND-composition and
AND-distillation.

Theorem
If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have AND-composition algorithms:

▶ treewidth

▶ pathwidth

Definition
The k-leaf outbranching problem:

▶ Input: A directed graph G and a number k

▶ Parameter: k

▶ Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

This problem has an OR-composition algorithm, hence no
polynomial kernel.

Definition
The k-leaf outbranching problem:

▶ Input: A directed graph G and a number k

▶ Parameter: k

▶ Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

This problem has an OR-composition algorithm, hence no
polynomial kernel.

Definition
The rooted k-leaf outbranching problem:

▶ Input: A directed graph G , a node r , and a number k

▶ Parameter: k

▶ Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Definition
The rooted k-leaf outbranching problem:

▶ Input: A directed graph G , a node r , and a number k

▶ Parameter: k

▶ Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Definition
The rooted k-leaf outbranching problem:

▶ Input: A directed graph G , a node r , and a number k

▶ Parameter: k

▶ Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n +m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n +m)O(1).

The ETH is a complexity theoretic assumption (like P ̸= NP).

P ̸= NP follows from ETH, but not necessarily the other way
around.

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n +m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n +m)O(1).

The ETH is a complexity theoretic assumption (like P ̸= NP).

P ̸= NP follows from ETH, but not necessarily the other way
around.

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n +m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n +m)O(1).

The ETH is a complexity theoretic assumption (like P ̸= NP).

P ̸= NP follows from ETH, but not necessarily the other way
around.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ϕ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ϕ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ϕ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

The Sparsification Lemma

Theorem
For ϵ > 0 and an integer r > 0 there is a constant c such that:

1. For every r -CNF formula ϕ with n variables there is a
disjunction ψ of at most 2ϵn many r-CNF formulas in which
every variable occurs in at most c clauses.

2. ϕ is satisfiable iff ψ is satisfiable.

3. ψ can be computed in 2ϵnnO(1) time.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ϕ be a 3-SAT instance with n variables m clauses.

Use the sparsification lemma to get formulas ψi .

The length of each ψi is only O(n).

Turn each ψi into an IS instance with O(n) vertices.

Solve them in 2o(n) steps.

Lower bounds on parameterized problems

If we can reduce 3-SAT to a parameterized problem L such that
the parameter is bounded by O(n+m), then L cannot be solved in
time 2o(k)poly(n) (under ETH).

Proof: Assume otherwise. Then we can solve 3-SAT in time
2o(n+m), which contradicts ETH:

First transform a 3-SAT instance I into an L-instance (x , k). Then
|x | = poly(|I |) and k = O(n +m). This takes polynomial time.

Then solve (x , k) ∈ L in time

2o(k)poly(|x |) = 2o(n+m)poly(n +m) = 2o(n+m).

Corollary: Vertex Cover and Feedback Vertex Set (and many other
problems) cannot be solved in time 2o(k)poly(n) under ETH.

Planar 3-SAT

The incidence graph of a 3-SAT formula has a node for each clause
and a node for each variable. There is an edge if the variable
occurs in a clause.

Planar 3-SAT consists of all satisfiable 3-SAT instances whose
incidence graph is planar.

We can reduce in polynomial time a 3-SAT with n variables and m
clauses to a Planar 3-SAT instance with O((n +m)2) clauses and
variables.

Proof idea: Replace each crossing by a planar crossover gadget.
There are at most nm crossings.

Planar 3-SAT

We cannot solve Planar 3-SAT in time 2o(
√
n) under ETH.

Proof: Assume otherwise. Take a 3-SAT instance with n variables
and O(n) clauses and transform it into a Planar 3-SAT instance

with O(n2) variables. Then solve it in 2(o
√
n2) = 2o(n) time.

Contradiction.

Corollary: We cannot solve Planar Vertex Cover and Planar

Dominating Set in time 2o(
√
k)poly(n) under ETH.

An artificial problem

The problem k × k-clique:

Input: Graph G with V (G) = {1, . . . , k}2

Parameter: k

Question: Is there a k-clique with one vertex from “each row”?

Lemma
k × k-clique cannot be solved in 2o(k log k) under ETH.

Suppose otherwise. Then we can solve 3-coloring in 2o(n).

Proof idea: Given a graph G with n nodes.

Let k be the smallest number with 3n/k+1 ≤ k .

(Then k log k = O(n) and n/k = O(log n).)

Evenly partition vertices of G into X1, . . . ,Xk .

Construct graph with proper 3-colorings of Xi ’s as vertices and an
edge between “compatible” colorings.

There is a special k-clique iff G is 3-colorable.

Lower bound can be transferred to closest string:

Under ETH closest string cannot be solved in 2o(m logm) = mo(m).

