A can be computed as in the antimonotone case.

How to compute M?

A can be computed as in the antimonotone case.

How to compute M?

Let M(S, T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

A can be computed as in the antimonotone case.
How to compute M?

Let M(S, T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M = > (—pPtMmes, T,

S, TCP,|S||TI<s

if P is the set of variables on the tape.

Definition

Multicolored Clique is the following problem:
Input: A Graph G, nodes colored by k colors
Parameter: k

Question: Is there a k-clique with k colors?

Theorem
Multicolored Clique is W[1]-hard.

Definition

List Coloring (parameterized by treewidth) is the following problem:
Input: A Graph G, nodes have lists of colors

Parameter: treewidth of G

Question: |s there a node coloring with colors from the lists?

Theorem
tw—List Coloring is W([1]-hard.

Definition

Multicolored Grid is the following problem:

Input: A Graph G, nodes colored by {(i,j) |1 <1i,j < k}.
Parameter: k

Question: |s there a k x k-grid whose node at coordinates (i, /) is

colored with (17,)?

Theorem
Multicolored Grid is W([1]-hard.

Theorem
List coloring is W[1]-hard with parameter treewidth even for planar
graphs.

Definition
An OR-distillation algorithm for a problem L is an algorithm that
transforms (vi,...,v;) into w with these properties:

1. runs in polynomial time

2. we Liffsomev; €L

3. |w| polynomially bounded in |v;| for all i

For which problems L do distillation algorithms exist?

Definition
An OR-distillation algorithm for a problem L is an algorithm that
transforms (vi,...,v;) into w with these properties:

1. runs in polynomial time
2. we Liffsomev; €L

3. |w| polynomially bounded in |v;| for all i

For which problems L do distillation algorithms exist?

Theorem
If an OR-distillation algorithm for an NP-complete problem exists,
then coNP C NP /poly.

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), ..., (v, k)) into (w, k") with
these properties:

1. runs in polynomial time

2. (w, k') € Liff some (vi,k) € L

3. k' polynomially bounded in k

Definition
An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), ..., (v, k)) into (w, k") with
these properties:

1. runs in polynomial time

2. (w, k') € Liff some (vi,k) € L

3. k' polynomially bounded in k

Theorem

Let L be an NP-complete parameterized problem (where the
parameter is encoded in unary as part of the input). If there is an
OR-composition algorithm for L and L has a polynomial kernel,
then there is also an OR-distillation algorithm for L.

Theorem
If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP C NP /poly.

Theorem
If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP C NP /poly.

The following problems have OR-composition algorithms:

» k-path
> k-cycle

A similar framework exists for AND-composition and
AND-distillation.

Theorem
If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP C NP /poly.

A similar framework exists for AND-composition and
AND-distillation.

Theorem
If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP C NP /poly.

The following problems have AND-composition algorithms:

> treewidth
» pathwidth

Definition

The k-leaf outbranching problem:
» Input: A directed graph G and a number k
» Parameter: k

» Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

Definition
The k-leaf outbranching problem:
» Input: A directed graph G and a number k
» Parameter: k
» Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

This problem has an OR-composition algorithm, hence no
polynomial kernel.

Definition

The rooted k-leaf outbranching problem:
» Input: A directed graph G, a node r, and a number k
» Parameter: k

» Question: Does G have a k-leaf outbranching with root r.

Definition

The rooted k-leaf outbranching problem:
» Input: A directed graph G, a node r, and a number k
» Parameter: k

» Question: Does G have a k-leaf outbranching with root r.

No easy to find OR-composition algorithm.

Definition

The rooted k-leaf outbranching problem:
» Input: A directed graph G, a node r, and a number k
» Parameter: k

» Question: Does G have a k-leaf outbranching with root r.

No easy to find OR-composition algorithm.
Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant o > 0 such that no algorithm can solve 3-SAT
in at most 2°"(n + m)°M) time.

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant o > 0 such that no algorithm can solve 3-SAT
in at most 2°"(n + m)°M) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2°(")(n 4 m)©().

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant o > 0 such that no algorithm can solve 3-SAT
in at most 2°"(n + m)°M) time.

In particular this implies:
There is no algorithm that solves 3-SAT in 2°(")(n 4 m)©().
The ETH is a complexity theoretic assumption (like P # NP).

P = NP follows from ETH, but not necessarily the other way
around.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2°(") steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2°(") steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ¢ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2°(") steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ¢ be a 3-SAT instance with n variables m clauses.
We can reduce it to an IS instance with 3m vertices.
This can be solved in 203m) — 20(m) time.

It does not contradict the ETH.

The Sparsification Lemma

Theorem
For ¢ > 0 and an integer r > O there is a constant c such that:

1. For every r-CNF formula ¢ with n variables there is a
disjunction i of at most 2¢" many r-CNF formulas in which
every variable occurs in at most ¢ clauses.

2. ¢ is satistiable iff 1 is satisfiable.

3. 1 can be computed in 2"n°M) time.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2°(") steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let ¢ be a 3-SAT instance with n variables m clauses.
Use the sparsification lemma to get formulas ;.

The length of each v; is only O(n).

Turn each 1); into an IS instance with O(n) vertices.

Solve them in 2°(" steps.

Lower bounds on parameterized problems

If we can reduce 3-SAT to a parameterized problem L such that
the parameter is bounded by O(n+ m), then L cannot be solved in
time 2°(9) poly(n) (under ETH).

Proof: Assume otherwise. Then we can solve 3-SAT in time
20(n+m) "\vhich contradicts ETH:

First transform a 3-SAT instance / into an L-instance (x, k). Then
|x| = poly(|!]) and k = O(n+ m). This takes polynomial time.

Then solve (x, k) € L in time

2°(k)poly(\x|) = 20("+m)p0/y(n +m)= po(n+m)

Corollary: Vertex Cover and Feedback Vertex Set (and many other
problems) cannot be solved in time 2°(K) poly(n) under ETH.

Planar 3-SAT

The incidence graph of a 3-SAT formula has a node for each clause
and a node for each variable. There is an edge if the variable
occurs in a clause.

Planar 3-SAT consists of all satisfiable 3-SAT instances whose
incidence graph is planar.

We can reduce in polynomial time a 3-SAT with n variables and m
clauses to a Planar 3-SAT instance with O((n + m)?) clauses and
variables.

Proof idea: Replace each crossing by a planar crossover gadget.
There are at most nm crossings.

Planar 3-SAT

We cannot solve Planar 3-SAT in time 2°¥Y™) under ETH.

Proof: Assume otherwise. Take a 3-SAT instance with n variables
and O(n) clauses and transform it into a Planar 3-SAT instance

with O(n?) variables. Then solve it in 2(0Vm?) — 20(n) time.

Contradiction.

Corollary: We cannot solve Planar Vertex Cover and Planar
Dominating Set in time 2°(ﬁ)po/y(n) under ETH.

An artificial problem

The problem k x k-clique:
Input: Graph G with V(G) = {1,..., k}?
Parameter: k

Question: Is there a k-clique with one vertex from “each row”?

Lemma
k x k-clique cannot be solved in 2°(k1°8k) ynder ETH.

Suppose otherwise. Then we can solve 3-coloring in 2°().
Proof idea: Given a graph G with n nodes.

Let k be the smallest number with 37/k+1 < k.

(Then klog k = O(n) and n/k = O(log n).)

Evenly partition vertices of G into Xi,..., Xk.

Construct graph with proper 3-colorings of X;'s as vertices and an
edge between “compatible” colorings.

There is a special k-clique iff G is 3-colorable.

Lower bound can be transferred to closest string:

Under ETH closest string cannot be solved in 20(mlegm) — po(m),

