
Parameterized Algorithms WS 2021
Prof. Dr. P. Rossmanith
Dr. E. Burjons, M. Gehnen, H. Lotze, D. Mock

Date: November 22th, 2021

Exercise Sheet with solutions 05

Task T16
A graph G = (V,E) is a split graph if its vertex set can be partitioned into sets C and I such
that C is a clique and I is an independent set. Show that a graph is a split graph if and only
if it does not contain the following three graphs as induced subgraphs:

, ,

In the Split Vertex Deletion problem, given a graph G and an integer k, the task is to check if
one can delete at most k vertices from G to obtain a split graph. Can you find an algorithm
which solves this problem in 5knO(1)? Can you find a different algorithm solving this problem
in 2knO(1)?

Solution
We can prove this property by a case distinction.
For the 5k algorithm, we first search for a forbidden subgraph in polynomial time and branch
on the removal of 5 (or 4) vertices. For the 2k algorithm, we use iterative compression. The
task reduces to showing that the disjoint version of the problem is polynomial-time solvable.
The main observation is that a split graph on n vertices has at most n2 partitions of the vertex
set into the clique and independent set part: for a fixed one partition, at most one vertex can be
removed from the clique side to the independent one, and at most one vertex can be moved in
the opposite direction. (In fact one can show that it has at most O(n) split partitions.) Hence,
you can afford guessing the “correct” partition of both the undeletable and the deletable part
of the instance at hand.

Task T17
The r-Regular Vertex Deletion problem is defined as follows: given a graph G and an
integer k, decide whether there is a set S ⊆ V (G) of size at most k whose deletion results in
an r-regular graph. A graph is r-regular if every vertex has degree exactly r. Show that this
problem admits an algorithm with running time O((r + 2)k · poly(n)).

Solution
First observe that any vertex of degree < r must necessarily be taken into the solution as we
cannot increase the degree of any vertex by removing other vertices. This reduction will be
applied after each branching step.
The branching itself proceeds as follows: pick any vertex v of degree larger than r. If no such
vertex exists we are done; as the above reduction rule already took care of all vertices of degree
less than r. Otherwise, pick any set A ⊆ N(v) of r + 1 neighbours of v. Note that from the
set v ∪ A we must delete at least one vertex to obtain an r-regular graph. Therefore, we can
branch on r + 2 different cases of choosing a vertex from v ∪ A to be part of the solution.
This yields the desired O((r + 2)k poly(n))-algorithm.

1



Task H11 (5 credits)

Let G = (L ·∪R,E) be a bipartite graph. Suppose that L1 ·∪L2 = L and R1 ·∪R2 = R are
partitions of the vertex sets L and R. Prove the following:

1. (L1 ∪ R1, L2 ∪ R2, E) is a bipartite graph iff there are no paths for the following pairs of
vertex sets: L1 and L2; L2 and R2; R2 and R1; R1 and L1.

2. One can find a minimum set X such that G−X does not contain any of the above paths
in polynomial time [Hint: use a flow algorithm].

Solution

1. First note that a path from L1 to L2 or from R1 to R2 would have even length as L,R
is a biparition of the graph. As L1 and L2 / R1 and R2 should occur on opposite sides in
the new bipartition, such paths must not exist. For the paths between L2,R2 and L1,R1
the same argument holds, but in the other direction: as L1∪R1, L2∪R2 should be a valid
bipartition, these paths would have even length, but that would contradict L,R being a
valid bipartition.

2. The idea is to create a flow network Gs,t as follows: add source s and sink t to the graph
(now interpreted as a network) and connect s to all vertices in L1 and R2 and, similarly,
connect t to all vertices in L2 and R1. All edges are assigned a capactiy of one.

We now want to calculate a maximal flow from s to t and use the max-flow/min-cut
theorem to obtain X—however, the direct application does not work as this would give us
a minimal edge cut. By a simple construction, however, we can transform our network Gs,t

to another network G′
s,t such that the minimum edge-cut of G′

s,t corresponds to a minimum
vertex-cut in Gs,t. This is possible by transforming each vertex v ∈ Gs,t, v 6∈ {s, t} into
two vertices vin, vout connected by and arc (vin, vout) in such a way that all incoming arcs
of v are now going into vin and all outgoing arcs of v now are originating from vout. We
will skip the proof of this construction as it can be found in various textbooks on efficient
algorithms.

Task H12 (5 credits)

Use the insights you gained from H11 to design a O(3knO(1))-algorithm for Odd Cycle Trans-
versal using iterative compression.

Solution

Consider an instance (G,S, k) of the compression routine for Odd Cycle Transversal, i.e.
S is a vertex set of G of size k + 1 such that G− S is bipartite. We iterate through all three-
partitions Y ·∪L ·∪R = S of the previous solution S, where Y denotes the set of vertices which
we want to keep for the new solution and L and R denote the vertices that will not be part of
the new solution. This further assigns a side (left or right) for each such vertex.

If L,R is not a bipartition we can immediately continue with the next three-partition as this
cannot be possibly extended to a valid solution.

Now, given L and R, our task is to find a set X ∈ G− S such that G− (X ∪ Y ) is a bipartite
graph. We further restrict our search to sets X which admit a bipartition of G − (X ∪ Y )
such that the sets L and R occur on opposite sides. Assume in the following that Y has been
removed from G. Observe that N(L) \ R, the neighbours of the set L in G − S, must be put
on the right side of the final bipartition, and similarly the vertices of N(R) \L must be put on
the left side. Vertices in N(L) ∩ N(R) cannot occur in a bipartite graph, so we have to take

2



them into X immediately (again assume for simplicity that we remove these vertices from the
graph).

Now we have essentially the situation described in exercise T26: let L1 = L,L2 = N(R)\L,R1 =
R,R2 = N(L) \ R. The only difference now is there also exists a set of not-assigned vertices
(namely the vertices in G − S not connected to L or R), however, the above proofs work
exactly the same with this small addition. It follows that we can now use the above outlined
flow algorithm to find X in G − S in polynomial time, yielding a O(3k poly(n)) algorithm for
Odd Cycle Transversal.

3


