
Parameterized Algorithms WS 2021
Prof. Dr. P. Rossmanith
Dr. E. Burjons, M. Gehnen, H. Lotze, D. Mock

Date: November 7th, 2021

Exercise Sheet with solutions 03

Task T8

Determine the treewidth of the graph on the right.

Solution

One can give a treewidth decomposition of width three so the treewidth is at most three.
The following bramble of order four shows that the treewidth is at least three. Therefore, the
treewidth is three.

Task T9

The notion of treewidth can be defined in several ways. One way to frame the definition of
treewidth is by using the following game called the cops-and-robber game. The game consists
of a set of cops trying to catch a robber. The robber lives in the the graph and can move with
infinite speed along the edges of the graph. He cannot, however, move through a vertex should
a cop be guarding it. The cops move about in helicopters, the point being that they are not
constrained to move along the edges of the graph, but they have finite speed. The game proceeds
as follows. Initially, the robber occupies some vertex of the graph. The cops announce their
positions (a set of vertices) and move towards them with finite speed. Seeing their positions,
the robber announces his position (a vertex) and moves to that vertex instantaneously. Not
all cops need land on vertices at once and not all cops need change positions, that is, if a cop
occupies a vertex, it may continue occupying that vertex in the next move of the game. The
cops catch the robber when one of them lands on a vertex occupied by him.

Show that if a graph has treewidth k then k + 1 cops can always catch the robber in a cops-
and-robber game on the graph. The converse also holds and this is not so easy to show. In the
exercises, we will assume this equivalent formulation of treewidth.

1

Solution
Assume a nice tree decomposition. Then the k + 1 cops can catch the robber as follows: first
k of them occupy the vertices of the root bag. As shown in T3, this separates the subgraphs
induced by the non-occupied bags. When the robber announces his position, the cops can close
in on him by moving in the direction of that subgraph. This is cleary possible if the current
bag is a non-join bag by moving a single cop (Introduce: move a cop to the new vertex, Forget:
remove a cop). If the bag is a join bag, then, in a nice tree decomposition, all children contain
the exact same vertices—thus this reduced to the previous case.
As in each step the component in which the robber resides shrinks by one vertex, the cops
always win in a finite number of steps.

Task T10
A tree-decomposition 〈T,X = {Xi | i ∈ V (T)}〉 of a graph G = (V,E) is nice if it is rooted at
some node and has only four types of nodes.

1. Leaf nodes i, the leaves of the decomposition, with |Xi| = 1.

2. Introduce nodes i that have exactly one child j such that Xi = Xj∪x, for some vertex x ∈
V (G).

3. Forget nodes i that have exactly one child j such that Xi = Xj \ x, for some vertex x ∈
V (G).

4. Join nodes i that have exactly two children j and k such that Xi = Xj = Xk.

Given a tree decomposition 〈T ′,X ′〉 of G of width w, construct a nice tree-decomposition 〈T,X〉
of G in polynomial time of width w such that |V (T)| = O(w · |V (T ′)|).

Solution
If a bag Xi is a leaf with |Xi| > 1 we can add a bag Xi \ {v} for some v ∈ Xi to it without
changing the width of the decomposition. If we do so repeatedly, at some point each leaf
has size 1. The number of bags added through this process is polyomial in the size of the
treedecomposition.
Consider a bag Xi with child Xj such that |Xi ∩Xj| > 1. We add a new bag Xl between i and
j with Xl = Xi ∩ Xj. This neither invalidates the tree decomposition nor does it increase its
width. After this process, we know that each parent-child pair Xi, Xj either satisfiyes Xi ⊆ Xj

or Xj ⊆ Xi. Wlog, assume Xi ⊆ Xj. If now |Xi ∩Xj| > 1, we introduce a bag Xl inbetween i
and j with Xl = (Xi ∩Xj) + v for some v ∈ Xj \Xi. Repeating this process exhausively will
leave us with a tree decomposition where the intersection of two adjacent bags has size exactly
one, which either constitues a Forget- or an Introduce.
Finally, we need to take care of the join bags. Consider a join bag Xi with children Xj1 , . . . , Xjr .
We replace Xi by a binary tree of copies of Xi with r leafs and connect each leaf to one of the
children Xj1 , . . . , Xjr . Again, this neither invalidates the tree decomposition nor does it increase
the width.
The polynomial running time of this procedure should be obvious.

Task T11
Let G be a graph and let S ⊆ V (G) be some vertex subset. Show that the following properties
are MSO-expressible:

• S is a vertex cover of G

• S is an independent set of G

• G is a connected graph

• S induces a cycle in G

• G has a Hamiltonian path

• S induces an even cycle in G

2

Solution

• Vertex cover: vc(S) = ∀x∀y(¬xEy ∨ x∈S ∨ y∈S)

• Independent set: is(S) = ∀x∀y(¬xEy ∨ x 6∈S ∨ y 6∈S)

• Connected: Let us introduce a slightly more general formula.

con(S) = ∀A∀B((A ⊆ S ∧B ⊆ S)→ ∃a∃b(a∈A ∧ b∈B ∧ aEb))

Where con(S) means that G[S] is connected (con(V) is the formula we need for this part
of the exercise)

• Cycle:
cycle(S) = con(S) ∧ ∀x∃a∃p∀y((x∈S ∧ y∈S)

→ a 6= p ∧ a∈S ∧ p∈S
∧ (xEy → y = a ∨ y = p))

If we would leave out the connectedness-condition, our formula would also be satisfied by
a collection of disjoint cycles.

• Hamiltonian path:

hampath =∃F ⊆E∃s∃t path(s, t, V, F)

path(s, t, S, F) =∀x((x∈S ∧ x 6= s ∧ x 6= t)

→ ∃a∃p∀y(a∈S ∧ p∈S ∧ a 6= p ∧ (xFy → y = a ∨ y = p)))

• Even cycle:
evencycle(S) = cycle(S) ∧ bipartite(S)

bipartite(S) =∃A∃B∀a∀b((a∈S ∧ b∈S ∧ aEb)

→ (a∈A ∧ b∈B) ∨ (b∈A ∧ a∈B))

Task H6 (5 credits)

Let 〈T,X〉 be a tree-decomposition of a graph G. Suppose that the subtrees obtained by deleting
an edge {i, j} ∈ E(T) are Ti, Tj and let Gi, Gj be the subgraphs induced by the vertices in the
bags of Ti and Tj, respectively. Show that deleting the set Xi ∩ Xj from V (G) disconnects G
into two subgraphs G′

i := Gi − (Xi ∩Xj) and G′
j := Gj − (Xi ∩Xj); that is, they do not share

vertices and there is no edge with one end in each of them.

Solution

Analogous to T3. First note that if we start with a valid tree-decomposition T of G, and then
by deleting the vertex set Xi ∩ Xj from each bag of the decomposition, we obtain valid tree-
decompositions Ti and Tj of G′

i and G′
j, respectively. Therefore, if G′

i and G′
j shared an edge

{u, v}, then both these vertices would appear in some bag B1 of Ti and a bag B2 of Tj. Since
Ti and Tj were obtained from T , by Property 3 of a tree-decomposition, every bag on the path
from B1 to B2 contains u, v. But this means that {u, v} ⊆ Xi ∩Xj, a contradiction, since we
assumed that Ti and Tj were obtained by deleting Xi ∩Xj. This shows that G′

i and G′
j cannot

share an edge. A similar argument shows that they cannot share vertices.

3

Task H7 (10 credits)

Let G be a graph and let S ⊆ V (G) be some vertex subset. Show that the following properties
are MSO-expressible:

• S is a dominating set of G

• S is a distance-2 dominating set of G

• P is a longest path in G

• S is a Steiner tree in G

Solution

• U is a dominating set iff

∀x(x ∈ U ∨ ∃yadj (x, y) ∧ y ∈ U)).

• U is a distance-2 dominating set iff

∀x(x ∈ U ∨ ∃y((adj (x, y) ∧ y ∈ U) ∨ ∃z((adj (x, y) ∧ adj (y, z) ∧ z ∈ U))))

• P is a path in G iff
∃s∃t∃F (s ∈ P ∧ t ∈ P ∧ path(s , t ,P ,F).

• S is a Steiner graph with terminal set T iff

(∀R(¬((∀x(x /∈ R ∨ x ∈ S)) ∧ (∃x(x ∈ R)) ∧ (∃x(x /∈ R ∧ x ∈ S)))

∨ ∃x∃y(adj (x, y) ∧ x ∈ R ∧ y /∈ R ∧ y ∈ S)) ∧ (∀x(x ∈ U ∨ x /∈ T)).

This graph is automatically a tree, if S is of minimal cardinality.

4

