Parameterized Algorithms WS 2021 Prof. Dr. P. Rossmanith Dr. E. Burjons, M. Gehnen, H. Lotze, D. Mock

Exercise Sheet 11

Task T33

Given a binary matrix of size $m \times n$, the *k*-rows problem consists in finding *k* rows such that their conjunction is 0, i.e., a row with *n* zeros.

If the k-rows problem is FPT on matrices of size $\frac{n}{2} \times n$, is the k-rows problem FPT on square matrices of (size $n \times n$)? Could you use an FPT algorithm for k-rows on $\frac{n}{2} \times n$ matrices to solve the problem on matrices of size $n \times n$?

Task T34

A graph H is a *d*-cluster graph H if H has d connected components and every connected component is of H is a clique.

For a set of *adjacencies* $A \subseteq \binom{V(G)}{2}$, we denote with $G \oplus A$ the graph $(V(G), E(G) \triangle A)$. Show that the *d*-CLUSTERING is in FPT with a subexponential function in k:

- Input: A graph G = (V, E)
- Parameter: k
- Question: Can you add or remove edges at most k edges in G such that the resulting graph is a d-cluster graph? That is, find an A of size at most k such that $G \oplus A$ is a d-cluster graph.

Lemma 1. If the vertices of a simple graph G with k edges are colored independently and uniformly at random with $\lceil \sqrt{8k} \rceil$ colors, then the probability that E(G) is properly colored is at least $2^{-\sqrt{k/2}}$.