
Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Introduction

Parameterized algorithms are a method for the exact solution of
hard problems.

Other such methods:

I Heuristics

I Simulated annealing

I Approximation algorithms

I Genetic algorithms

I Branch- and Bound

I Backtracking

I Total enumeration

NP-complete Problems
Many problems encountered in practice are NP-complete.

We know from complexity theory:

Definition

A language L is NP-complete, if

I L ∈ NP

I Every problem in NP can be reduced to L in polynomial time.

Theorem

If there is a polynomial time algorithm for an NP-complete
problem, then P = NP.

Question: Does that mean that NP-complete problems are hard to
solve in practice?

NP-complete problems

Why is SAT (satisfiability) NP-complete?

Because the computation of a nondeterministic Turing-maching
can be simulated by a combinatorial circuit.

The existence of a successful computation of a Turingmachine can
be reduced to the existence of a satisfying assignment for a circuit.

Therefore there are formulas whose satisfiability is as hard to
determine as to solve any problem in NP.

If look at the set of all formulas, then some of them are indeed
very hard.

But most formulas are not constructed in this way!

Example: TSP

51.050611

Example: TSP

435.489475

Example: TSP

2107.739054

Running Times

NP-complete problems are hard in practice because there are no
algorithms that always go in the right direction.

I Greedy-Algorithmen

I Divide-and-Conquer

I Dynamic Programming

Hence, many wrong partial solutions have to be considered, leading
to exponential running times.

Comparing Running Times

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100

1.1**n
n**3
n**2

Comparing Running Times

1

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

1 10 100

1.2**n
n**3
n**2

Comparing Running Times

1

1e+10

1e+20

1e+30

1e+40

1e+50

1e+60

1e+70

1 10 100

2**n
n**3
n**2

NP-Completeness as an Excuse

Garey and Johnson. Computers and Intractability.

NP-Completeness as an Excuse

Garey and Johnson. Computers and Intractability.

NP-Completeness as an Excuse

Garey and Johnson. Computers and Intractability.

NP-Completeness as an Excuse

Molecular biologist Joseph Felsenstein:

About ten years ago, some computer scientists came by
and said they heard we have some really cool problems.
They showed that the problems are NP-complete and
went away!

NP-Completeness as an Excuse

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Easy and Hard Instances

I Exponential running time in the worst case

I Running time needs to be huge only for some instances

I Practical instances might be easy

I How can we distinguish between hard and easy instances?

Parameter

We assign a number, the parameter, to each instance.

Our hope:

I Good running times for small parameters

I Instances occuring in practice have small parameters

There is no contradiction to the NP-completeness of the problem!

Main Definition

Let there be an algorithmic problem.

Let n be the size of some instance and k the corresponding
parameter.

The problem is fixed parameter tractable, if there is an algorithm
solving the problem whose running time is

O(f (k)nc).

Here c is a constant and f an arbitrary function.

Running Time of a Parameterized Algorithm

1.2**k*n**2

20 40 60 80100120140160180200
2040

6080
100120

140160
180200

1
100000
1e+10
1e+15
1e+20
1e+25

The running time is 1.2kn2. The parameter is between 1 and n.

Running Time of a Parameterized Algorithm

1.2**k*n**2

01002003004005006007008009001000
2 4 6 8 1012

1416
1820

1
10
100
1000

10000
100000
1e+06
1e+07
1e+08

The running time is 1.2kn2. The parameter is small.

Running Time of a Parameterized Algorithm

1.2**k*n**2
1.1**n

01002003004005006007008009001000
2 4 6 8 1012

1416
1820

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30
1e+35
1e+40
1e+45

The running time is 1.2kn2. The parameter is small. The
non-parameterized algorithm has running time 1.1n.

Running Time of a Parameterized Algorithm

1.2**k*n**2
1.1**n

20 40 60 80100120140160180200
2040

6080
100120

140160
180200

1
100000
1e+10
1e+15
1e+20
1e+25

Example: Vertex Cover

Input: A graph G = (V ,E).

Output: A minimal Vertex Cover C ⊆ E .

Definition

A set C ⊆ V is a Vertex Cover of G = (V ,E), if at least one
vertex of each edge in E is in C .

Example

Example

Expressing Vertex Cover as an ILP

Let G = (V ,E) be a graph with V = {v1, . . . , vn}.

Minimize v1 + . . .+ vn

subject to 0 ≤ vi ≤ 1 for i = 1, . . . , n

vi + vj ≥ 1 for {vi , vj} ∈ E

vi ∈ Z for i = 1, . . . , n

Every NP-complete problem can be reduced to an ILP (but often it
is a bad idea to do so).

British Museum Method

Many important NP-complete problems are indeed search
problems. In some (very big) search space the solutions are well
hidden.

One possible plan of attack is consequently to exhaustively search
the whole search space.

In the case of vertex cover this amounts to looking at all C ⊆ V .

That makes 2|V | different subsets.

The running time is O(|E |2|V |).

Backtracking

Consider some vertex v ∈ V .

There are the two possibilities v ∈ C or v /∈ C .

If v /∈ C , then N(v) ⊆ C , because all edges incident to v must be
covered.

(N(v) is the neighborhood of v , i.e., all nodes adjacent to v .)

These simple observations lead immeadiately to an algorithm.

Backtracking

Input: G = (V ,E)

Output: An optimal vertex cover VC (G)

if V = ∅ then return ∅
Choose an arbitrary node v ∈ G
G1 := (V − {v}, { e ∈ E | v /∈ e })
G2 := (V −{v}−N(v), { e ∈ E | e∩N(v) = ∅ })
if |{v} ∪ VC (G1)| ≤ |N(v) ∪ VC (G2)|
then return {v} ∪ VC (G1)
else return N(v) ∪ VC (G2)

Backtracking

G

G1 G2

Backtracking (a different approach)

Every edge e = {v1, v2} must be covered by v1 of v2.

Hence, we can look at an edge {v1, v2} and try recursively both
possibilities:

I v1 ∈ C

I v2 ∈ C

This again leads to immeadiately to a simple algorithm:

Backtracking (a different approach)

Input: G = (V ,E)

Output: An optimal vertex cover VC (G)

if E = ∅ then return ∅
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1)| ≤ |{v2} ∪ VC (G2)|
then return {v1} ∪ VC (G1)
else return {v2} ∪ VC (G2)

This recursive algorithms computes an optimal vertex cover.

Heuristics

1 2 3

4 5 6

Always choose a vertex with maximal degree (greedy).

Approximation algorithms

Every edge has to be covered by at least one of its vertices.

Problem: Which one?

Solution: Take both.

I Naturally there is no guarentee that we find an optimal
solution.

I The vertex cover found in this way can be at most twice as
big as an optimal one.

Approximation algorithms

The algorithm might look like this:

C := ∅;
while E 6= ∅ do

Choose some e ∈ E ;
V := V − e;
C := C ∪ e;
E := { e ′ ∈ E | e ∩ e ′ = ∅ }

od;
return C

Parameterized Algorithm

Input: G = (V ,E), k

Parameter: k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1, k − 1)| ≤ |{v2} ∪ VC (G2, k − 1)|
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Questions:

1. What does “no solution” mean?

2. Why is the running time O(f (k)nc)?

3. What exactly is f (k)?

4. Do we always find an optimal vertex cover?

5. Can we simplify the last lines of the algorithm?

Parameterized Algorithm

Input: G = (V ,E), k

Parameter: k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if |{v1} ∪ VC (G1, k − 1)| ≤ |{v2} ∪ VC (G2, k − 1)|
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Questions:

1. What does “no solution” mean?

2. Why is the running time O(f (k)nc)?

3. What exactly is f (k)?

4. Do we always find an optimal vertex cover?

5. Can we simplify the last lines of the algorithm?

Parameterized Algorithm

Input: G = (V ,E), k

Output: A vertex cover VC (G , k) of size k or smaller, if it exists.

if E = ∅ then return ∅
if k = 0 then return “no solution”
Choose some edge {v1, v2} ∈ E
G1 := (V − {v1}, { e ∈ E | v1 /∈ e })
G2 := (V − {v2}, { e ∈ E | v2 /∈ e })
if VC (G1, k − 1) 6= “no solution”
then return {v1} ∪ VC (G1, k − 1)
else return {v2} ∪ VC (G2, k − 1)

Parameterized Algorithm — Running Time

Every recursive call requires only polynomial time.

How many recursive calls are there?

Every incarnation is a leaf in the recursion tree or has two children.

I The root has parameter k

I The parameter of a child is at least one smaller compared to
the parent

I The parameter never becomes negative

Therefore the height of the recursion tree is at most k

Its size is then at most 2k .

The Long Road to Vertex Cover

I Fellows & Langston (1986): O(f (k)n3)

I Robson (1986): O(1.211n)

I Johnson (1987): O(f (k)n2)

I Fellows (1988): O(2kn)

I Buss (1989): O(kn + 2kk2k+2)

I Downey, Fellows, & Raman (1992): O(kn + 2kk2)

I Balasubramanian, Fellows, & Raman (1996):
O(kn + 1.3333kk2)

I Balasubramanian, Fellows, & Raman (1998):
O(kn + 1.32472kk2)

The Long Road to Vertex Cover

I Downey, Fellows, Stege (1998): O(kn + 1.31951kk2)

I Niedermeier & R. (1998): O(kn + 1.292k)

I Chen, Kanj, & Jia (1999): O(kn + 1.271kk2)

I Chen, Kanj, & Jia (2001): O(kn + 1.285k)

I Niedermeier & R. (2001): O(kn + 1.283k)

I Chandran & Grandoni (2004): O(kn + 1.275kk1.5)

I Chen, Kanj, & Xia (2005): O(kn + 1.274k)

Bounded Search Trees

A Bounded search tree algorithm must fulfil these condition on its
recursion tree:

I Every node is labeled by some natural number

I The root is labeled by some function of the parameter

I The number of children of a node is limited by some function
of the parent’s label

I Children are labeled by smaller numbers than the parent

Correctness

Theorem

Let an algorithm be a bounded search tree algorithm.

Then there is a function f , such that every search tree for an input
with parameter k has at most f (k) many nodes.

Proof of Correctness

Proof

We define a function S(k) that is an upper bound on the number
of leaves in a subtree whose root is labeled by k .

I Assume that the root is labeled with at most w(k)

I Assume that every node with label k hat at most b(k) many
children

I The existence of w and b is guaranteed by the definition of
bounded search trees.

Proof of Correctness (cont.)

Proof

S(k) ≤ b(k)S(k − 1),

because there are at most b(k) children whose subtrees have each
at most S(k − 1) many leaves.

With S(0) = 1 the solution of this recurrence is

S(k) ≤
k∏

i=1

b(i).

The total number of leaves consequently is at most S(w(k)).

Example Closest String

Let u and v be two strings of length n.

We define h(u, v), called Hamming distance of u and v , as the
number of positions on which u and v differ.

Example:
h(agctcagtaccc , agctcataacgc) = 3

Example Closest String

The Closest string problem is defined as follows:

Input: k strings s1, . . . , sk of length n, a number m

Question: Is there a string s with h(s, si) ≤ m for all 1 ≤ i ≤ k?

The parameter is m

Motivation: Construct a chemical marker that closely fits to a set
of DNA sequences

In practice m is small, e.g. 5

Example Closest String

agcacagtacgcaatagtgtcgcaggt

agctcagtagccaatagagtcccaggt

agatcagttcccaatagagtcgcacgt

agctcagtaaaaaatagagtcgcaggt

agcgcagtacacaatagagtcgcaagt

Example Closest String

agcacagtacgcaatagtgtcgcaggt

agctcagtagccaatagagtcccaggt

agatcagttcccaatagagtcgcacgt

agctcagtaaaaaatagagtcgcaggt

agcgcagtacacaatagagtcgcaagt

agctcagtacccaatagagtcgcaggt

Example Closest String

gctaggagtcagaagtaggcgttgcat

gcaatgaatcagaactgggcctagcat

gctagggatcagaactaggcctagcat

gcaaggaatcataactaggcctagcat

gcaaggaattagaaataggcctagcat

gcaagaaatcagaactagccctagcat

Example Closest String

gctaggagtcagaagtaggcgttgcat

gcaatgaatcagaactgggcctagcat

gctagggatcagaactaggcctagcat

gcaaggaatcataactaggcctagcat

gcaaggaattagaaataggcctagcat

gcaagaaatcagaactagccctagcat

gcaaggagtcagaactaggcctagcat

An Algorithm for Closest String

Input: Strings s1, . . . , sk , a number m.

Algorithm center(s, l) finds out, if there is an s ′, such that

I h(s, s ′) ≤ l

I h(s ′, si) ≤ m für 1 ≤ i ≤ k

With center we can easily solve the closest string problem:

Just call center(s1,m)!

An Algorithm for Closest String

We can implement center(s, l) as follows:

Choose some string si with h(s, si) > m.

(If no such string exists, then s is a solution and we answer Yes.)

Choose a set P of m + 1 positions, where s and si differ.

Try all positions p ∈ P. Each time let s ′ be the same as s except
for position p, where s ′ coincides with si .

Each time call center(s ′, l − 1) . If one of them answers Yes, then
answer Yes.

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

I The root is labeled with m

I Children are labeled with smaller numbers than the parent

I If the label is 0, we find a solution in polynomial time.

I Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.

Nevertheless, it is also interesting to consider the
parameter k .

Question: Is Closest String fixed parameter tractable, if k is
the parameter?

(Both questions, for k and m, were open for a long time.)

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

I The root is labeled with m

I Children are labeled with smaller numbers than the parent

I If the label is 0, we find a solution in polynomial time.

I Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.

Nevertheless, it is also interesting to consider the
parameter k .

Question: Is Closest String fixed parameter tractable, if k is
the parameter?

(Both questions, for k and m, were open for a long time.)

An Algorithm for Closest String

The size of the search tree is at most (m + 1)m.

I The root is labeled with m

I Children are labeled with smaller numbers than the parent

I If the label is 0, we find a solution in polynomial time.

I Every node has at most m + 1 children.

This algorithm is efficient and works well in practice.

It has been known for a long time that this
problem is fixed parameter tractable, if both k
and m are parameters.

For applications m is the crucial parameter.

Nevertheless, it is also interesting to consider the
parameter k .

Question: Is Closest String fixed parameter tractable, if k is
the parameter?

(Both questions, for k and m, were open for a long time.)

Analysis of Bounded Search Tree Algorithms

If

1. the root of a tree is labeled with k ,

2. every node has at most two children,

3. no label is negative,

4. children are labeled with smaller numbers than the parent,

then it is quite clear that the tree has at most 2k many leaves.

How can we generalize this obvious fact?

Branching vectors

If every inner node has two children and their labels are exactly one
smaller, we get the recurrence relation

Bk = Bk−1 + Bk−1.

The corresponding branching vector is (1, 1).

A recurrence

Bk = Bk−z1 + Bk−z2 + · · ·+ Bk−zm

corresponds to the branching vector (z1, . . . , zm).

We can succinctly describe bounded search trees with branching
vectors.

Branching Vectors

If the two branching vectors (1, 1) and (2, 2, 3) occur in a bounded
search tree algorithms, we get the recurrence

Bk = max{2Bk−1, 2Bk−2 + Bk−3}.

We would like to analyse bounded search tree algorithms with
multiple branching vectors. For this end we have to solve
recurrences as above.

Linear Recurrence Equations with Constant Coefficients

For a branching vector the corresponding recurrence is a linear
recurrence equation with constant coefficients.

Its general form is

an = c1an−1 + c2an−2 + · · ·+ ctan−t für n ≥ t.

We develop a simple method to solve such recurrence equations.

Linear Recurrence Equations with Constant Coefficients

Let us assume there is a solution of the form an = αn, where
α ∈ C can be a complex number. If we insert this solution into the
recurrence and set n = t, we get

αt = c1α
t−1 + c2α

t−2 + · · ·+ ct−1α + ct

meaning that α is a root of the characteristic polynomial

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct .

Linear Recurrence Equations with Constant Coefficients

On the other hand, an = αn is a solution of the recurrence, if α is
a root of

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct .

This is easy to see if we insert it into the recurrence:

an = c1an−1 + c2an−2 + · · ·+ ctan−t

Linear Recurrence Equations with Constant Coefficients

If α is a k-fold root of χ, then an = njαn for 0 ≤ j < k are also
solutions of the recurrence. We can check this again by inserting it
into the recurrence:

njαn =
t∑

r=1

cr (n − r)jαn−r resp. njαt −
t∑

r=1

cr (n − r)jαt−r = 0.

The left hand side is a linear combination of χ(α), χ′(α), χ′′(α),
. . . , χ(j)(α). The first k − 1 derivatives of χ become 0 at α
because α ist a k-fold root of χ.

Linear Recurrence Equations with Constant Coefficients

Theorem

an = c1an−1 + c2an−2 + · · ·+ ctan−t for n ≥ t

has the solutions an = njαn, for every root α of the characteristic
polynomial

χ(z) = z t − c1z
t−1 − c2z

t−2 − · · · − ct−1z − ct ,

and for all j = 0, 1, . . . , k − 1, where k is the order of the root α.
All these solutions are linearly independent. They form a base of
the vector space of solutions.

The Size of Search Trees

Theorem

A bounded search tree with branching vector(r1, . . . , rm), whose
root is labeled with k , has size

kO(1)αk ,

where α is the root with biggest absolute value of the
characteristic polynomial

χ(z) = z t − z t−r1 − z t−2 − · · · − z t−rm ,

where t = max{r1, . . . , rm}.

The Size of Search Trees

Example:

The branching vector (1, 3) has the characteristic polynomial

z3 − z2 − 1.

The largest root is approximately 1.465571.

The size of search tree is O(1.465572k).

The Size of Bounded Search Trees

Another example:

The branching vector (1, 2, 2, 3, 6) has the characteristic polynomial

z6 − z5 − z4 − z4 − z3 − 1.

The largest real root is 2.160912.

The size of the search tree is therefore O(2.160913k).

The Reflected Characteristic Polynomial

To determine the characteristic polynomial

z6 − z5 − z4 − z4 − z3 − 1

from the branching vector

(1, 2, 2, 3, 6)

is not easy and error-prone.

The reflected characteristic polynomial is

1− z − z2 − z2 − z3 − z6.

The Reflected Characteristic Polynomial

Theorem

The characteristic polynomial has a root α iff the reflected
characteristic polynomial has the root 1/α.

The Reflected Characteristic Polynomial

Theorem

A search tree with branching vector (r1, . . . , rm), whose root is
labeled with k , has the size

kO(1)α−k ,

where α is the root with minimum absolute value of the reflected
characteristic polynomial

χ(z) = 1− z r1 − z r2 − · · · − z rm .

Branching Numbers

Definition

For each branching vector there is a corresponding branching
number which is the reciprocal of the smallest root of the
characteristic polynomial.

Theorem

A search tree with branching number α whose root is labeled k has
size

kO(1)αk .

If the root is simple then the size is O(αk).

Branching Numbers — Example 1

I Consider a very simple algorithm for Vertex Cover.

I The branching vector is (1, 1).

I The reflected characteristic polynomial is 1− 2z .

I The branching number is 2.

I The size of the search tree is O(2k).

Branching Numbers — Example 2

I If all nodes of a graph have degree 2 or lower, we can find an
optimal vertex cover in polynomial time.

I An improved algorithm can choose a node for branching with
degree at least 3.

I This gives us the branching vector (1, 3).

I The corresponding branching number is 1.465571.

I The size of the search tree is O(1.465572k).

Multiple Branching Vectors

Theorem

Let M be a set of branching vectors. A search tree whose
branchings correspond to some branching vector from M each and
whose root is labeled with k has size

kO(1)αk ,

where α is the biggest branching number of all branching vectors
in M.

Problem Kernels

Let L be a parameterized problem.

Sometimes you can answer the question (w , k) ∈ L as follows:

I If k is very big, use brute force.

I If k is small and w is complicated, then (w , k) cannot be a
solution.

I If k is small and w is simple, then we can easily solve
(w , k) ∈ L.

Problem Kernels

Definition

A function f : Σ∗ ×N→ Σ∗ ×N is a reduction to a problem kernel
for a parameterized problem L, if

I (w , k) ∈ L iff f (w , k) ∈ L,

I there is a function f ′ : N→ N, such that |w ′| ≤ f ′(k), if
f (w , k) = (w ′, k ′),

I f can be computed in polynomial time.

In a nutshell: A reduction to a problem whose size is limited by a
function of the parameter.

Example Vertex Cover

Assume some graph has a vertex cover of size k .

Let v be a vertex whose degree is at least k + 1.

Question:

Must v belong to the vertex cover of size k?

Reduction to a problem kernel:

If there is a node with degree > k , remove it. The original graph
has a VC of size k iff the reduced graph has a VC of size k − 1.

Example Vertex Cover

Assume some graph has a vertex cover of size k .

Let v be a vertex whose degree is at least k + 1.

Question:

Must v belong to the vertex cover of size k?

Reduction to a problem kernel:

If there is a node with degree > k , remove it. The original graph
has a VC of size k iff the reduced graph has a VC of size k − 1.

Example Vertex Cover

Question:

How big is the resulting graph at most?

(if we also remove isolated vertices)

Answer:

I The vertex cover itself consists of only k nodes.

I Each of these k nodes can have at most k neighbors.

I There can be at most k(k + 1) nodes in total.

Example Vertex Cover

Question:

How big is the resulting graph at most?

(if we also remove isolated vertices)

Answer:

I The vertex cover itself consists of only k nodes.

I Each of these k nodes can have at most k neighbors.

I There can be at most k(k + 1) nodes in total.

A smaller Problem Kernel

Theorem (Nemhauser and Trotter)

Let G = (V ,E) be a graph of n nodes and m edges.

It takes only polynomial time to find two disjoint node sets C0 and
V0 such that

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.

If G has a vertex cover of size k , then
|V0|+ |C0| ≤ 2k

Why???

An optimal vertex cover of G [V0] combined with C0 is
an optimal vertex cover of G .

Why???

A smaller Problem Kernel

Theorem (Nemhauser and Trotter)

Let G = (V ,E) be a graph of n nodes and m edges.

It takes only polynomial time to find two disjoint node sets C0 and
V0 such that

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.

If G has a vertex cover of size k , then
|V0|+ |C0| ≤ 2k

Why???

An optimal vertex cover of G [V0] combined with C0 is
an optimal vertex cover of G .

Why???

A smaller Problem Kernel

Theorem (Nemhauser and Trotter)

Let G = (V ,E) be a graph of n nodes and m edges.

It takes only polynomial time to find two disjoint node sets C0 and
V0 such that

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.

If G has a vertex cover of size k , then
|V0|+ |C0| ≤ 2k

Why???

An optimal vertex cover of G [V0] combined with C0 is
an optimal vertex cover of G .

Why???

A smaller Problem Kernel

This results in the following algorithm that reduces (G , k) to
(G [V0], k ′).

I Compute C0 and V0

I Let k ′ = k − |C0|
I G now has a vertex cover of size k if and only if G [V0] has a

vertex cover of size k ′.

If 2k ′ < |V0|, then G cannot have a vertex cover of size k .

A smaller Problem Kernel

The following algorithm solves Vertex Cover:

1. Compute V0 and C0

2. Output No if 2(k − |C0|) < |V0|
3. Compute an optimal vertex cover C1 of G [V0]

4. If |C1|+ |C0| ≤ k output Yes and No otherwise

Running time: nO(1) + O(k2k)

Proof of the Nemhauser–Trotter Theorem

An algorithm that computes C0 and V0:

Let G = (V ,E), V ′ be a disjoint copy of V , and GB = (V ,V ′,EB)
be the bipartite subgraph such that

{x , y ′} ∈ EB ⇐⇒ {x , y} ∈ E .

I Compute an optimal vertex cover CB for GB .

I Let C0 = { x | x ∈ CB and x ′ ∈ CB }.
I Let V0 = { x | either x ∈ CB or x ′ ∈ CB }.

G

GB

G

GB CB

G C0 V0

GB CB

Proof of the Nemhauser–Trotter Theorem

An algorithm that computes C0 and V0:

Let G = (V ,E), V ′ be a disjoint copy of V , and GB = (V ,V ′,EB)
be the bipartite subgraph such that

{x , y ′} ∈ EB ⇐⇒ {x , y} ∈ E .

I Compute an optimal vertex cover CB for GB .

I Let C0 = { x | x ∈ CB and x ′ ∈ CB }.
I Let V0 = { x | either x ∈ CB or x ′ ∈ CB }.

G

GB

G

GB CB

G C0 V0

GB CB

Proof of the Nemhauser–Trotter Theorem

An algorithm that computes C0 and V0:

Let G = (V ,E), V ′ be a disjoint copy of V , and GB = (V ,V ′,EB)
be the bipartite subgraph such that

{x , y ′} ∈ EB ⇐⇒ {x , y} ∈ E .

I Compute an optimal vertex cover CB for GB .

I Let C0 = { x | x ∈ CB and x ′ ∈ CB }.
I Let V0 = { x | either x ∈ CB or x ′ ∈ CB }.

G

GB

G

GB CB

G C0 V0

GB CB

Proof of the Nemhauser–Trotter Theorem

An algorithm that computes C0 and V0:

Let G = (V ,E), V ′ be a disjoint copy of V , and GB = (V ,V ′,EB)
be the bipartite subgraph such that

{x , y ′} ∈ EB ⇐⇒ {x , y} ∈ E .

I Compute an optimal vertex cover CB for GB .

I Let C0 = { x | x ∈ CB and x ′ ∈ CB }.
I Let V0 = { x | either x ∈ CB or x ′ ∈ CB }.

G

GB

G

GB CB

G C0 V0

GB CB

Proof of the Nemhauser–Trotter Theorem

Obviously,

I C0 and V0 are disjoint

I C0 and V0 can be computed in polynomial time

We need to prove the three statements of the theorem:

1. If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a vertex
cover of G .

2. There is an optimal vertex cover of G containing all of C0.

3. Every vertex cover of G [V0] has size at least |V0|/2.

Statement 1

Claim: If D ⊆ V0 is a vertex cover of G [V0], then D ∪ C0 is a
vertex cover of G .

Let D ⊆ V0 a vertex cover of G [V0] and e = {x , y} ∈ E an
arbitrary edge.

Let I0 = V − V0 − C0.

I If an endpoint of e is in C0. . . okay

I If both endpoints are in V0. . . okay

I x ∈ I0 ⇒ y , y ′ ∈ CB ⇒ y ∈ C0, . . . okay

Statement 2

Claim: There is an optimal vertex cover of G containing all of C0.

Let S an optimal vertex cover and SV = S ∩ V0, SC = S ∩ C0,
SI = S ∩ I0, S̄I = I0 − SI .

Lemma

(V − S̄I) ∪ S ′C is a vertex cover of CB .

Proof

Let {x , y ′} ∈ EB .

If x /∈ S̄I , then x ∈ (V − S̄I) ∪ S ′C .

If x ∈ S̄I , then x ∈ I0, x /∈ S ⇒ y ∈ S , y , y ′ ∈ CB ⇒
⇒ y ∈ C0 ⇒ y ∈ S ∩ C0 = SC ⇒ y ′ ∈ S ′C .

Statement 2

|V0|+ 2|C0| = |V0 ∪ C0 ∪ C ′0|
= |CB |
≤ |(V − S̄I) ∪ S ′C | due to the lemma

= |V − S̄I |+ |S ′C |
= |V0 ∪ C0 ∪ I0 − (I0 − SI)|+ |S ′C |
= |V0|+ |C0|+ |SI |+ |SC |

It follows that |C0| ≤ |SI |+ |SC | = |S | − |SV | and thus
|C0 ∪ SV | ≤ |S |.

Statement 3

Claim: Every vertex cover of G [V0] has size at least |V0|/2.

Let S0 an optimal vertex cover of G [V0].

C0 ∪ C ′0 ∪ S0 ∪ S ′0 is a vertex cover of GB , because C0 ∪ S0 is a
vertex cover of G .

|V0|+ 2|C0| = |CB | ≤ |C0 ∪ C ′0 ∪ S0 ∪ S ′0| = 2|C0|+ 2|S0|

The claim follows.

Graph Properties

Definition

A graph property Π is a class of graphs that is closed under graph
isomorphisms.

That is, if two graphs G1 and G2 are isomorphic, both belong to Π
or both don’t.

Graph Properties

Example

I Connected graphs

I Trees

I Graphs containing a clique of size 100

I Planar graphs

I Regular graphs

I Finite graphs

Graph Properties

These are not graph properties:

I Graphs whose nodes are natural numbers

I Every nonemtpy finite set of graphs

I (For Logicians: Each set of graphs)

Hereditary Graph Properties

A graph property Π is called hereditary if the following holds:

Let G ∈ Π and H be an induced subgraph of G .

Then H ∈ Π as well.

In other words: Π is closed under taking induced subgraphs.

Questions:

1. Does the empty graph belong to every hereditary
graph property?

2. Are graph properties lattices with respect to the
induced subgraph relation?

Hereditary Graph Properties

A graph property Π is called hereditary if the following holds:

Let G ∈ Π and H be an induced subgraph of G .

Then H ∈ Π as well.

In other words: Π is closed under taking induced subgraphs.
Questions:

1. Does the empty graph belong to every hereditary
graph property?

2. Are graph properties lattices with respect to the
induced subgraph relation?

Hereditary Graph Properties

Which graph properties are hereditary?

I Bipartite graphs

I Complete graphs

I Planar graphs

I Trees

I Connected graphs

I Graphs of diameter at most d

I Regular graphs

Hereditary Graph Properties

Which graph properties are hereditary?

I Forests

I Graphs containing an independent set of size 8

I Graphs with at least 17 nodes

I Graphs containing no matching of size 35

I 5-regular graphs

I Infinite graphs

I Chordal graphs

Characterization by Obstruction Sets

Definition

A graph property Π has a characterization by obstruction sets if
there is a graph property F such that G ∈ Π if and only if F does
not contain an induced subgraph of G .

Question:

Does every hereditary graph
property have a
characterization by
obstruction sets?

Answer:

Yes. Choose F = G − Π with G
containing all graphs.

Characterization by Obstruction Sets

Definition

A graph property Π has a characterization by obstruction sets if
there is a graph property F such that G ∈ Π if and only if F does
not contain an induced subgraph of G .

Question:

Does every hereditary graph
property have a
characterization by
obstruction sets?

Answer:

Yes. Choose F = G − Π with G
containing all graphs.

Characterization by Obstruction Sets

Definition

A graph property Π has a characterization by obstruction sets if
there is a graph property F such that G ∈ Π if and only if F does
not contain an induced subgraph of G .

Question:

Does every hereditary graph
property have a
characterization by
obstruction sets?

Answer:

Yes. Choose F = G − Π with G
containing all graphs.

Finite Obstruction Sets

Definition

A graph property Π has a finite characterization by obstruction
sets if it has a characterization by F , and F contains only a finite
number of non-isomorphic graphs.

Finite Obstruction Sets

Which graph properties have a finite characterization by
obstruction sets?

I Graphs containing an independent set of size 7?

I Bipartite graphs?

I Forests?

I Planar graphs?

I 5-colorable graphs?

I Graphs containing a vertex cover of size k?

Finite Obstruction Sets

Which graph properties have a finite characterization by
obstruction sets?

I Triangle-free graphs?

I Graphs without any k-cliques?

I Graphs of diameter at most d?

I Cycle-free graphs?

I Graphs not containing any cycle of length k?

Graph Modification Problems

Let Π be a graph property. There are the following well-known
graph modification problems for an input G :

1. Edge Deletion Problem: Can we obtain a graph in Π by
deleting k edges from G?

2. Node Deletion Problem: Can we obtain a graph in Π by
deleting k nodes from G?

3. Node/Edge Deletion Problem: Can we obtain a graph in Π by
deleting k nodes and l edges from G?

4. Edge Insertion Problem: Can we obtain a graph in Π by
inserting k edges in G?

Generalization

Definition

Πi ,j ,k -Graph Modification Problem

Input: A graph G = (V ,E)

Parameter: i , j , k ∈ N

Question: Can we obtain a graph in Π by removing up to i nodes,
removing up to j edges, and inserting up to k edges in G?

The Leizhen Cai Theorem

Theorem

Let Π be a graph property with a finite characterization by
obstruction sets.

Then the Πi ,j ,k -Graph Modification Problem can be solved in
O(N i+2j+2k |G |N+1) steps and is thus fixed paramater tractable.

N is the number of nodes in the largest graph in the obstruction
set, i.e., a constant.

Proof of the Leizhen Cai Theorem

Lemma

Let Π be a hereditary graph property that can be checked in T (G)
steps.

Then it takes O(|V |T (G)) many steps to find a minimal forbidden
induced subgraph for any G = (V ,E) /∈ Π.

In this context, the term “minimal” refers to the order “induced
subgraph”.

Proof of the Leizhen Cai Theorem

Proof of the lemma:

Let V = {v1, . . . , vn}.

H := G
for i = 1, . . . , n do

if H − {vi} /∈ Π then H := H − {vi}
od

Upon termination, H is a minimal forbidden induced subgraph.

Proof of the Leizhen Cai Theorem
Input: G = (V ,E)

Parameter: i , j , k ∈ N

Question: G ∈ Πi ,j ,k

while i + j + k > 0 do
H := minimal forbidden induced subgraph of G
Modify G by removing an edge or node or by inserting
an edge from/in H
Let i := i − 1, j := j − 1, or k := k − 1.
if G ∈ Π then answer YES

od

Answer NO

Proof of the Leizhen Cai Theorem

Running time:

Find H: O(|V | · |V |N) according to the lemma

There are only N ways of removing a node from H

There are only
(N
2

)
ways of deleting or inserting an edge from/in H

Total running time

O(N i+2j+2k |V |N+1).

Interleaving — Search Trees and Problem Kernels

In a search tree, the parameter decreases as it approaches the
leaves, whereas this is not necessarily the case for the size of the
instance (which could even grow).

If the expansion of a node in the search tree takes p(n) steps, then
the total running time becomes O(s(k , n)p(n)), where s(k, n)
denotes the size of the search tree.

Interleaving

The size of this graph never drops below n/2 within the entire
search tree of a vertex cover algorithm, provided that no reduction
to the problem kernel is performed.

Interleaving

The size of the parameter is reflected by the size of the red dots.
The recursion stops when the parameter is small. In the leaves, the
parameter is bounded by a constant.

Nearly all nodes are close to a leaf =⇒ nearly all nodes have a
small parameter.

Interleaving

If we perform a reduction to problem kernel after each expansion of
a node in the search tree, then the instances decrease in size as we
approach the leaves.

A more detailed analysis reveals that the total running time is only
O(s(n, k) + t(n) + r(n)) rather than O(s(n, k)t(n)), where r(n)
denotes the time required for the reduction to problem kernel.

Search Trees and Dynamic Programming

If all nodes are close to leaves and there are many of them, then
some must be identical.

=⇒ We can improve the running time by computing the respective
solutions only once and storing them in a database.

Search Trees and Dynamic Programming

Example: Vertex Cover and the 2k algorithm

I Each node of the search tree is an induced subgraph.

I After a reduction to problem kernel, the size of a graph is
bounded by 2k ′ from above if we are looking for a solution of
size k ′.

I There are at most O

((
2k

2k ′

))
induced subgraphs of size at

most 2k ′.

I The running time is O

(
2k−k

′
(

2k

2k ′

))
if we store solutions of

size 2k ′ in the database.

I If we choose the value of k ′ optimally, the running time
becomes 1.886k .

Tree Decompositions

A tree decomposition of a
graph G is a tree, whose nodes
are called bags. Every bag is a
set of nodes from G .

a

b

c

d

e

f

g

h

i

I Any node and any edge from G ist contained in at least one
bag.

I A node contained in two bags A, B must be contained in any
bag between A and B.

Tree Decompositions

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

Tree Decompositions and Treewidth

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

The width of a tree decompostion is the size of the largest bag
minus 1.

⇒ Here, the treewidth is 2.

Tree Decompositions and Treewidth

Alternative definition:

a

b

c

d

e

f

g

h

i

The treewidth of G is the minimum number of cops, needed to
catch a robber in G , minus 1.

Tree Decompositions and Treewidth

Given a tree decomposition of G with width w ,
many optimization problems on G can be solved in
time cw · poly(n) using dynamic programming on the
tree decomposition.

Many problems can be solved fast, if a tree decomposition of small
width can be found.

General Result

Any problem with the following properties is fixed parameter
tractable:

I Let G = (V ,E) a planar graph and k a number. Question:
Exists some S ⊆ V of size k with a certain property (e.g. S is
a vertex cover).

I There is a constant c such that the distance between any
node and S is bounded by c .

I Given a tree decomposition of width w , the problem can can
be solved in f (w)nO(1) steps.

Special cases are Vertex Cover, Independent Set, and Dominating
Set.

Proof Idea

I Since any node is at most c steps away from a node in S ,
there is no path of length more than 2c |S |.

I Hence, the diameter is O(k), if there exists some S of size k .

I The treewidth of a planar graph with diameter d is at most
3d (without proof).

I If the diameter is larger than 2ck , the output is no.

I Otherwise, we obtain a tree decomposition of width 6ck and
can use it to solve the problem.

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

Dynamic Programming on a Tree Decomposition

General approach:

I The tree decomposition is transfered into a rooted tree: An
arbitrary node becomes the root. Children point to their
parents.

I A bag represents the subgraph induced by its children.

I For any bag a table is calculated, showing the optimal
solutions for its subgraphs.

I The children’s tables are calculated first.

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

{b, d, e} 3

{b, d} 2

{b, e} 4

{d, e} 4

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

{b, d, e} 3

{b, d} 2

{b, e} 4

{d, e} 4

{e, f, g} 3

{e, f} 2

{e, g} 2

{f, g} 2

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

{b, d, e} 3

{b, d} 2

{b, e} 4

{d, e} 4

{e, f, g} 3

{e, f} 2

{e, g} 2

{f, g} 2

{e, g, h} 3

{e, g} 2

{e, h} 3

{g, h} 3

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

{b, d, e} 3

{b, d} 2

{b, e} 4

{d, e} 4

{e, f, g} 3

{e, f} 2

{e, g} 2

{f, g} 2

{e, g, h} 3

{e, g} 2

{e, h} 3

{g, h} 3

{e, d, h} 5

{e, d} 4

{e, h} 6

{d, h} 5

Dynamic Programming on a Tree Decomposition

a

b

c

d

e

f

g

h

i

a
b

d

b
c

d

b
d

e

d
e

h

h
i

e
f

g

e
g

h

{a, b, d} 3

{a, b} 2

{b, d} 2

{a, d} 2

{b, c, d} 3

{b, c} 3

{b, d} 2

{c, d} 3

{b, d, e} 3

{b, d} 2

{b, e} 4

{d, e} 4

{e, f, g} 3

{e, f} 2

{e, g} 2

{f, g} 2

{e, g, h} 3

{e, g} 2

{e, h} 3

{g, h} 3

{e, d, h} 5

{e, d} 4

{e, h} 6

{d, h} 5

{h, i} 6

{h} 5

{i} 5

Extended Monadic Second Order Graph Theory

We introduce a new logic called MSO2-logic.

This logic contains variables for nodes, edges, sets of nodes, and
sets of edges.

There are the quantifiers ∃ and ∀ and operators ∧, ∨ and ¬.

Furthermore, the following relations are included:

u ∈ U, d ∈ D, inc(d , u), adj(u, v), · = ·

where u, v are node variables, d is an edge variable, U is a node
set variable, and D is an edge set variable.

Extended Monadic Second Order Graph Theory

A graph can either satisfy a formula or not. This allows for a
description of graph classes by formulas.

Example

Which graphs satisfy the following formula:

∃u∃v∃w(adj(u, v) ∧ adj(u,w) ∧ adj(v ,w))

Is there a formula describing bipartite graphs ?

Courcelle’s Theorem

Theorem

Let G be a graph class, described by a formula in MSO2-logic.

The following proplem is fixed parameter tractable:

Input: Graph G with treewidth k

Parameter: k

Question: Does G belong to G

Proof

difficult. . .

Courcelle’s Theorem

Theorem

Let G be a graph class, described by a formula in MSO2-logic.

The following proplem is fixed parameter tractable:

Input: Graph G with treewidth k

Parameter: k

Question: Does G belong to G

Proof

difficult. . .

Courcelle’s Theorem

We could solve VertexCover, when parameterized by treewidth.

Using Courcelle’s Theorem, the size of the formula depends on the
size of the vertex cover, we are searching:

∃v1 . . . ∃vk∀e(inc(e, v1) ∨ · · · ∨ inc(e, vk)

Why constitutes this a problem?

Courcelle’s Theorem (Extension)

We extend the MSO2-logic:

We allow the following new quantifier:

minU ∀e∃u(u ∈ U ∧ inc(e, u))

Whenever the treewidth is bounded, a minimal set of nodes U,
satisfying an arbitrary MSO2 formula F (U), can be calculated in
polynomial time.

Courcelle’s Theorem (Extension)

Let G be a graph with edge lables from {1, . . . , c}. The
corresponding sets of nodes are V1, . . . ,Vc}.

We can express inclusion in Vi .

Example

maxU ⊆ V1∀x ∈ V2∃y(adj(x , y) ∨ y /∈ U)

(Exists a set U of red nodes, such that any blue node has a
neighbor not belonging to U.)

This problem is called Red Blue Nonblocker.

Treewidth and Courcelle’s Theorem

A minor of a graph G , is graph obtained from G by contraction of
edges and removal of nodes and edges.

Lemma

Any planar graph is a minor of a grid.

Proof

Simple. For example by Induction.

Treewidth and Courcelle’s Theorem

Theorem

Let H be a finite, planar graph and G a class of graphs, not
containing H as a minor.

Then there is a constant cH , such that the treewidth of any graph
in G is at most cH .

Proof

very difficult and long

Treewidth and Courcelle’s Theorem

Theorem

Let H be a finite, planar graph and G a class of graphs, not
containing H as a minor.

Then there is a constant cH , such that the treewidth of any graph
in G is at most cH .

Proof

very difficult and long

Treewidth and Courcelle’s Theorem

Corollary

“A graph with large treewidth contains a large grid”:

If tw(G) > t holds, G contains the grid Qf (t) as minor, where f is
a monotone, unbounded function.

Proof

direct consequence of the last theorem

Treewidth and Courcelle’s Theorem

Example

Input: A planar graph G and k pairs (si , ti) of nodes from G .
(Parameter is k)

Question: Are there edge disjoint paths connecting each si with ti?

The problem belongs to FPT:

If the treewidth is small, we can apply Courcelle’s Theoremn.

If the treewidth is large, a large grid is contained as a minor.
Removing a node from this grid does not “harm” this structure.

Color Coding

Problem: Does a given graph contain a cycle of length k?

This problem is NP-complete, because Hamilton Cycle is a special
case.

Question: Is it fixed parameter tractable?

Color Coding

Algorithm:

1. Randomly color each node in one of k colors

2. Check for a colorful cycle of length k, i.e., a cycle in which no
two nodes have the same color

Analysis:

The probability that a cycle of length k becomes colorful is

k!/kk ∼
√

2πk e−k .

Color Coding

The cycle is colorful with probability 4!/44 = 3/32.

Color Coding

After using the above algorithm to find a cycle of length k for N
times, the probability that it failed to detect a cycle every time is

(
1− k!

kk

)N

.

Letting N = Mkk/k! ∼ Mek/
√
k yields

(
1− M

N

)N

∼ e−M .

This failure probability can be made arbitrarily small by the choice
of M.

Color Coding

A question remains:

How do you check for a colorful cycle?

Color Coding

Answer:

Create a table P(u, v , l).

P(u, v , l) contains all sets of pairwise distinct nodes that
constitute a path from u to v of length l .

P(u, v , l) can be computed from P(u, v , l − 1).

Time required: 2k · poly(n)

Color Coding

Definition

A k-perfect family of hash functions is a family F of functions
{1, . . . , n} → {1, . . . , k} such that for every S ⊆ {1, . . . , n} with
|S | = k there exists an f ∈ F that is bijective when restricted to S .

Let us first assume we had such a family of perfect hash
functions. . .

Color Coding

Deterministic algorithm:

I Color the graph using each f ∈ F .

I For each coloring, check for a colorful cycle of length k.

This algorithm works if we can construct a k-perfect family of hash
functions.

This algorithm is fast if the family is small, can be expressed in
little space, and its functions can be evaluated quickly.

Color Coding

Fortunately, there are k-perfect families of hash functions
consisting of no more than O(1)k log n functions.

They can be stored compactly.

They can be evaluated quickly: Each f (i) can be computed fast.

That is, there is a deterministic FPT algorithm for finding cycles of
length k .

Integer Linear Programming

Input: An integer linear program with k variables.

Parameter: k

Question: Does this ILP have a solution?

This Problem is fixed parameter tractable.

The running time is f (k)nO(1), but the f (k) are painfully large.

Proof: very involved. . .

Feedback Vertex Set

Input: A graph G and a number k

Parameter: k

Question: Are there ≤ k nodes whose removal makes G acyclic?

Is FVS fixed parameter tractable?

Iterative Compression

Assume we already know a FVS of size k .

Does this help to find a FVS of size k − 1?

Step 1: Find a subset of the FVS to keep

Plan: Add vertices from the forest to this FVS

Step 2: Apply reduction rules

Contract components of the FVS into one vertex

Contract degree-2 vertices in the forest

Step 3: Branching algorithm

If a leaf in the forest has two neighbors in the FVS:

a) put it into the FVS

b) delete it and decrease k

Running time

Size of the branching tree 4k

Total size of all branching trees:

k∑

j=0

(
k

j

)
4k = 5k

Total running time 5knO(1)

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Depth-First Search Trees

Input: A graph G and a number k

Parameter: k

Question: Is there a path of length k in G?

Construct a depth-first search tree.

What is the helpful property of a DFS tree?

Depth-First Search Trees

Input: A graph G and a number k

Parameter: k

Question: Is there a path of length k in G?

Construct a depth-first search tree.

What is the helpful property of a DFS tree?

A Simple Theorem

Theorem

Let G be a graph and k a number.

Then it takes only polynomial time to find one of these:

1. A cycle of length at least k

2. A tree decomposition of treewidth at most k

Proof

k + 1 cops slowly traverse the DFS tree

A Simple Theorem

Theorem

Let G be a graph and k a number.

Then it takes only polynomial time to find one of these:

1. A cycle of length at least k

2. A tree decomposition of treewidth at most k

Proof

k + 1 cops slowly traverse the DFS tree

Long Paths

The theorem allows us to find paths of length k easily:

1. If we find a cycle longer than k , there obviously is a path of
length k as well

2. Otherwise we use the tree decomposition and Courcelle’s
theorem:
∃x1 . . . ∃xk+1(inc(x1, x2) ∧ · · · ∧ inc(xk , xk+1) ∧ x1 6= x2 . . .)

Question: Can we solve
Vertex Cover this way?

Long Paths

The theorem allows us to find paths of length k easily:

1. If we find a cycle longer than k , there obviously is a path of
length k as well

2. Otherwise we use the tree decomposition and Courcelle’s
theorem:
∃x1 . . . ∃xk+1(inc(x1, x2) ∧ · · · ∧ inc(xk , xk+1) ∧ x1 6= x2 . . .)

Question: Can we solve
Vertex Cover this way?

Long Paths

The theorem allows us to find paths of length k easily:

1. If we find a cycle longer than k , there obviously is a path of
length k as well

2. Otherwise we use the tree decomposition and Courcelle’s
theorem:
∃x1 . . . ∃xk+1(inc(x1, x2) ∧ · · · ∧ inc(xk , xk+1) ∧ x1 6= x2 . . .)

Question: Can we solve
Vertex Cover this way?

A Complicated Theorem

Theorem (Bodlaender)

Let G be a graph and k , l some numbers.

It takes f (k , l)|G | steps to find one of these:

1. A subdivision of the 2× k grid

2. A subdivision of the l-circus graph

3. A tree decompositon of G of treewidth 2(k − 1)2(l − 1) + 1.

Proof

Again, using a DFS tree.

7-circus graph

Question: Can we solve Dominating
Set this way?

Why did it work for planar graphs?

A Complicated Theorem

Theorem (Bodlaender)

Let G be a graph and k , l some numbers.

It takes f (k , l)|G | steps to find one of these:

1. A subdivision of the 2× k grid

2. A subdivision of the l-circus graph

3. A tree decompositon of G of treewidth 2(k − 1)2(l − 1) + 1.

Proof

Again, using a DFS tree.

7-circus graph

Question: Can we solve Dominating
Set this way?

Why did it work for planar graphs?

A Complicated Theorem

Theorem (Bodlaender)

Let G be a graph and k , l some numbers.

It takes f (k , l)|G | steps to find one of these:

1. A subdivision of the 2× k grid

2. A subdivision of the l-circus graph

3. A tree decompositon of G of treewidth 2(k − 1)2(l − 1) + 1.

Proof

Again, using a DFS tree.

7-circus graph

Question: Can we solve Dominating
Set this way?

Why did it work for planar graphs?

A Complicated Theorem

Theorem (Bodlaender)

Let G be a graph and k , l some numbers.

It takes f (k , l)|G | steps to find one of these:

1. A subdivision of the 2× k grid

2. A subdivision of the l-circus graph

3. A tree decompositon of G of treewidth 2(k − 1)2(l − 1) + 1.

Proof

Again, using a DFS tree.

7-circus graph

Question: Can we solve Dominating
Set this way?

Why did it work for planar graphs?

Application 1

Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Does the following statement hold?

If a graph contains a tree with k leaves,
then it also contains a spanning tree with
at least k leaves.

Both the 2× k grid and the k-circus graph contain a tree with k
leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Application 1

Max-Leaf-Spanning-Tree:

Input: A graph G and a number k

Parameter: k

Question: Does G have a spanning tree with at least k leaves?

Does the following statement hold?

If a graph contains a tree with k leaves,
then it also contains a spanning tree with
at least k leaves.

Both the 2× k grid and the k-circus graph contain a tree with k
leaves.

That is, Max-Leaf-Spanning-Tree is fixed parameter tractable.

Application 2

Feedback Vertex Set:

Input: A graph G and a number k

Parameter: k

Question: Are there ≤ k nodes whose removal makes G acyclic?

Theorem

Feedback Vertex Set is fixed parameter tractable.

Application 2

Feedback Vertex Set:

Input: A graph G and a number k

Parameter: k

Question: Are there ≤ k nodes whose removal makes G acyclic?

Theorem

Feedback Vertex Set is fixed parameter tractable.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Feedback Vertex Set

Theorem

Feedback Vertex Set is fixed parameter tractable.

Proof

Apply Bodlaender’s theorem.

1. Small tree decomposition: Courcelle

2. 2× 3k grid: No

3. 4k-circus graph: Remove the tip and check for a FVS of size
k − 1.

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Parameterized Complexity Theory

Classical complexity theory:

I Complexity classes P, NP, etc.

I Languages L ∈ P, L ⊆ Σ∗

I Framework insufficient for parameterized problems

Parameterized Complexity Theory

Definition

A parameterized problem over the alphabet Σ is a set of pairs
(w , k), where w ∈ Σ∗ and k ∈ N.

It is not allowed that there exists w and k 6= k ′ with (w , k) ∈ L
and (w , k ′) ∈ L, if L is a parameterized problem.

The second condition states that k is a function of w .

Parameterized Complexity Theoery

We like to state parameterized problems as follows:

Input: A graph G and a number k

Parameter: k

Question: Does G contain a clique of size k as a subgraph?

Parameterized Complexity Theory

The parameter can be some arbitraty number, if it can be easily
computed from the input.

Input: A graph G and a number k

Parameter: The diameter of G

Question: Does G contain a clique of size k as a subgraph?

Here it is easy to compute (G ,∆(G)) from G in order to get
formally a parameterized problem.

Parameterized Complexity Theory

One goal of complexity theory is to categorize problems into easy
and hard ones.

For this purpose P and NP are best known.

Others are:

I NC and L

I AC 0 and NC 1

I EXPTIME and EXPSPACE

I etc. etc.

Parameterized Complexity Theory

In parameterized complexity theory the easy problems can be found
in the class FPT .

Definition

The class FPT contains all parameterized problems that are fixed
parameter tractable.

Formally: L ∈ FPT , if there is an algorithm solving (w , k) ∈ L in
at most f (k)|w |c steps, where c is a constant and f : N→ N an
arbitrary function.

Parameterized Complexity Theory

A fundamental concept in complexity theory are reductions.

Important example: polynomial time many-one reductions:

g : Σ∗ → Σ∗ reduces the problem L1 to L2, if

1. w ∈ L1 ⇐⇒ g(w) ∈ L2.

2. g(w) can be computed in |w |O(1) steps.

Important property: If L1 can be reduced to L2 and L1 /∈ P, then
L2 /∈ P.

Important property: If L1 can be reduced to L2 and L1 /∈ P, then
L2 /∈ P.

Parameterized Complexity Theory

Question: Is this reduction useful for parameterized problems?

1. w ∈ L1 ⇐⇒ g(w) ∈ L2.

2. g(w) can be computed in |w |O(1) steps.

Does the corresping property hold: It L1 can be reduced to L2 and
L1 /∈ FPT , then L2 /∈ FPT .

Parameterized Complexity Theory

That corresponding property does not hold:

We can map (w , k) to (w , |w |)!

If we reduce a problem to itself like this, we have f (|w |)|w |c steps
instead of f (|w |)|w |c steps to compute a solution.

It that way we can solve every computable problem.

A polynomial time reduction is not fine grained enough.

Parameterized Reductions

Definition

A parameterized problem L1 ⊆ Σ∗ can be reduced to L2 ⊆ Γ∗ by a
parameterized reduction if

I r , s : N→ N are computable functions,

I there is a function g : Σ∗ ×N→ Γ∗, (w , k) 7→ (w ′, k ′), that
can be computed in r(k)|w |O(1) steps and k ′ = s(k),

I (w , k) ∈ L1 if and only if g(w , k) ∈ L2.

Parameterized Reductions

Theorem

If L1 /∈ FPT and there is a parameterized reduction from L1 to L2,
then L2 /∈ FPT .

Proof

Assume L2 ∈ FPT . We can computed (w ′, k ′) = g(w , k) in
r(k)|w |c steps such that k ′ = s(k) and |w ′| ≤ r(k)|w |c .

Then test whether (w ′, k ′) ∈ L2 taking
f ′(k ′)|w ′|d ≤ f ′(s(k))r(k)d |w |cd steps.

Because (w , k) ∈ L1 ⇐⇒ (w ′, k ′) ∈ L2, we answered whether
(w , k) ∈ L1 holds and therefore L1 ∈ FPT .

Parameterized Reductions

Look at some classical reductions:

I Vertex Cover ot Independent Set

I CNF-SAT to 3SAT (weighted)

I Clique to Independent Set

Classical reductions are usually not parameterized reductions.

Parameterized Complexity Theory

Definition

A boolean circuit is an acyclic graph such that:

I There is exactly one vertex with outdegree 0, the Output.

I Every vertex with indegree 0 is an Input and labeled by xi or
¬xi .

I All other vertices are gates and labeled by ∧, ∨ or ¬ (with
indegree 1).

Parameterized Complexity Theory

x1 x2 x3 x4 x5

∧ ¬ ∨ ¬

∨ ∧ ∧

∨ ∧

∨ ∨

∧

To find out whether a boolean circuit has a satisfying assignment
is NP-complete.

Parameterized Complexity Theory

x1 x2 x3 x4 x5

∧ ¬ ∨ ¬

∨ ∧ ∧

∨ ∧

∨ ∨

∧

Big gates have indegree > 2.

The height is the length of the longest path.

The weft is the maximal number of big gates on some path.

Parameterized Complexity Theory

Definition

Let F(t, h) be the set of all boolean circuits with height h and
weft t.

Definition

The weighted satisfiability problem LF(t,h):

Input: (G , k), where G ∈ F(t, h)

Parameter: k

Question: Has G a satisfiying assingment of weight k

The weight of an assignment is the number of 1s.

Parameterized Complexity Theory

Definition

A parameterized problem is in the complexity class W [t] if it can
be reduced to LF(t,h) for some h by a parameterized reduction.

Example

Independent Set is in W [1].

Dominating Set is in W [2].

Question: Why?

Parameterized Complexity Theory

Definition

A problem L is W [t]-hard, if every problem in W [t] can be reduced
to L by a parameterized reduction.

Definition

A problem is W [t]-complete, if it belongs to W [t] and is
W [t]-hard.

Parameterized Complexity Theory

Theorem

Let A be a W [t]-complete problem.

Assume that A can be reduced to B by a parameterized reduction
and B ∈W [t].

Then B is also W [t]-complete.

Proof

We already assumed that B ∈W [t].

Since every problem in W [t] can be reduced to A, the
W [t]-hardness follows from the transitivity of parameterized
reducibility.

Short Turing Machine Acceptance

We will see later that the following problem is W [1]-complete:

Definition

Short Turing Machine Acceptance:

Input: A non-deterministic Turing maching M, a word w , a
number k .

Parameter: k

Question: Does M have an accepting path of length at most k on
input w?

The class W [1, s] and W [1, 2]

We consider the weighted satisfiability problem for very simple
circuits.

Definition

Let s > 1 be a number. By F(s) we denote the family of all circuit
whose output is an AND-gate that is connected to OR-gates with
indegrees at most s. The OR-gates are directly connected to
inputs (literals, i.e., variables or negated variables).

We define W [1, s] as the class of all problems in W [1] that can be
reduced to LF(s) by a parameterized reduction.

We will prove the following theorem:

Theorem

Short Turing Machine Acceptance ∈W [1, 2]

For this end we need a reduction from Short Turing Machine
Acceptance to LF(2).

We have to map M, w , k to a circuit and a number k ′ = f (k) in
such a way that there is a satisfying assignment of weight k ′ iff M
accepts w in at most k steps.

We will prove the following theorem:

Theorem

Short Turing Machine Acceptance ∈W [1, 2]

For this end we need a reduction from Short Turing Machine
Acceptance to LF(2).

We have to map M, w , k to a circuit and a number k ′ = f (k) in
such a way that there is a satisfying assignment of weight k ′ iff M
accepts w in at most k steps.

We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

I the position of the read/write-head,

I the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.

We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

I the position of the read/write-head,

I the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.

We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

I the position of the read/write-head,

I the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.

We can enumerate all configurations of M and therefore identify
them with the numbers 1, 2, . . .

A configuration consists of

I the position of the read/write-head,

I the state.

If i is a configuration and a is a symbol, then let δ(i , a) = (j , b)
hold if M changes from configuration i into j when reading the
symbol a overwriting it with b.

We model with the variable Ct,i ,j ,a,b that M changes from
configuration i to j in the tth step while reading an a and
overwriting it with a b.

The variable Mt,p,a,b models that at the beginning of the tth step
the symbol a can be found at the pth position of the tape and that
it is overwritten with a b during this step.

Our next goal is to construct a formula whose satisfying
assignments model a computation of the Turing maching M.

In particular there will be a satisfying assignment with Ct,i ,j ,a,b = 1
iff there is a computation where M goes from configuration i to j
in its tth step reading an a and overwriting it with a b.

Every possible computation path should correspond to exactly one
(weighted) satisfying assignment.

Moreover: There should exist only accepting computation of
length k and satisfying assignments with weight f (k).

The variable Mt,p,a,b models that at the beginning of the tth step
the symbol a can be found at the pth position of the tape and that
it is overwritten with a b during this step.

Our next goal is to construct a formula whose satisfying
assignments model a computation of the Turing maching M.

In particular there will be a satisfying assignment with Ct,i ,j ,a,b = 1
iff there is a computation where M goes from configuration i to j
in its tth step reading an a and overwriting it with a b.

Every possible computation path should correspond to exactly one
(weighted) satisfying assignment.

Moreover: There should exist only accepting computation of
length k and satisfying assignments with weight f (k).

We need a lot of constraints in order to make this model work.

We will express each constraint by an AND of ORs.

We define clauses in such a way that a wrong modelling
automatically leads to a non-satisfying assignment.

In that way, satisfying assignments are those that do not overstep
any rule.

Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) 6= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) 6= (a′, b′).

Question:

Why only one possibility? We have
nondeterministic TMs after all?

Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) 6= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) 6= (a′, b′).

Question:

Why only one possibility? We have
nondeterministic TMs after all?

Rule 1:

“Nothing exists twice because we have a computation path”

More precisely: In step t the machine M is in exactly one state,
changes to exactly one other, reads exactly one symbol, and
overwrites it by exactly one symbol.

How can we enforce Rule 1 by clauses?

Ct,i ,j ,a,b → Ct,i ′,j ′,a′,b′

or, equivalently,
Ct,i ,j ,a,b ∨ Ct,i ′,j ′,a′,b′

for all t, i , j , a, b, i ′, j ′, a′, b′ with (i , j , a, b) 6= (i ′, j ′, a′, b′) and

Mt,p,a,b → Mt,p,a′,b′

for all t, p, a, b, a′, b′ with (a, b) 6= (a′, b′).

Question:

Why only one possibility? We have
nondeterministic TMs after all?

Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:

Do we need the other direction, too?

“If there is a symbol on the tape, then
this symbol is read.”

Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:

Do we need the other direction, too?

“If there is a symbol on the tape, then
this symbol is read.”

Rule 2:

“M and C must fit together.”

More precisely: If we read a symbol, it has to be there beforehand.
If we write a symbol, it must be there afterwards.

How can we enforce Rule 2 by clauses?

Ct,i ,j ,a,b → Mt,p(i),a,b

for all t, i , j , a, b, where p(i) is the position of the read/write head
in configuration i .

Question:

Do we need the other direction, too?

“If there is a symbol on the tape, then
this symbol is read.”

Rule 3:

“Subsequent steps have to fit together.”

More precisely: If one step ends with a configuration, the next step
has to start with the same one. The tape content cannot change
from step t to step t + 1 at most places.

How can we enforce Rule 3 by clauses?

Ct,i ,j ,a,b → Ct+1,i ′,j ′,c,d

for all t, i , j , i ′, j ′a, b, c , d with i ′ 6= j and

Mt,p,a,b → Mt+1,p,c,d

for all t, p, a, b, c , d with b 6= c .

Rule 3:

“Subsequent steps have to fit together.”

More precisely: If one step ends with a configuration, the next step
has to start with the same one. The tape content cannot change
from step t to step t + 1 at most places.

How can we enforce Rule 3 by clauses?

Ct,i ,j ,a,b → Ct+1,i ′,j ′,c,d

for all t, i , j , i ′, j ′a, b, c , d with i ′ 6= j and

Mt,p,a,b → Mt+1,p,c,d

for all t, p, a, b, c , d with b 6= c .

Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:

How big is k ′?

Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:

How big is k ′?

Rule 4:

“The beginning and the end have to be correct. The computation
path must be accepting.”

→ Exercise

Because all rules have to hold simultaneously we can combine
them with a big AND.

This yields an F(2)-formula as desired.

There is an accepting path of length k iff there is a satisfying
assignment with weight k ′.

Question:

How big is k ′?

Remember:

We just proved the following.

Theorem

Short Turing Machine Acceptance ∈W [1, 2]

The class antimonotone-W [1, s]

We consider the weighted satisfiability problem for very simple
structured circuits.

Definition

Let s > 1 be a number. By antimonotone-F(s) we denote the
family of all circuits whose output is an AND-gate connected to
OR-gates with indegree at most s. The OR-gates are connected to
negative literals only (negated variables).

Antimonotone-W [1, s] is the class of all parameterized problems in
W [1] that can be reduced to LAntimonoton-F(s) by a parameterized
reduction.

Theorem

LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof

Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:

What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]

Theorem

LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof

Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:

What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]

Theorem

LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof

Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:

What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]

Theorem

LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof

Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:

What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]

Theorem

LAntimonoton-F(s) can be reduced to Short Turing Machine
Acceptance be a parameterized reduction.

Corollary

antimonotone-W [1, s] ⊆ antimonotone-W [1, 2]

Proof

Construct a turing machine that works as follows:

1. Guess k variables onto the tape.

2. Visit all subsets of size s of them.

3. Verify for each subset that it does not cover a clause.

Question:

What is the running time?

Our real goal is:

W [1] ⊆ antimonotone-W [1, 2]

The class W [1, 1, s]

Now we consider the weighted satisfiability problem for different,
but still very simple circuits.

Definition

Let s > 1 be a number. By F(1, 1, s) we denote the family of all
circuits whose output is an OR-gate connected to AND-gates that
are connected to OR-gates with indegree at most s.

By W [1, 1, s] we denote the class of problems in W [1] that can be
reduced to LF(1,1,s) by a parameterized reduction.

Simplification of Weft-1-Circuits

Theorem

Consider a circuit of weft 1 and height h.

Then we can construct an equivalent circuit F(1, 1, s) in
polynomial time, where s depends only on h.

Proof

I DNF und CNF

I de Morgan

I Combination of gates of same type

I Distributive law

Simplification of Weft-1-Circuits

Theorem

Consider a circuit of weft 1 and height h.

Then we can construct an equivalent circuit F(1, 1, s) in
polynomial time, where s depends only on h.

Proof

I DNF und CNF

I de Morgan

I Combination of gates of same type

I Distributive law

LF(1,1,s)

Goal: Reduce LF(1,1,s) to STMA.

Intermediate step:

Reduce LF(1,1,s) to one TM Mi for all subcircuits below the output
gate.

One TM guesses whicht Mi will be used for the simulation.

Still not known:

How to reduce LF(1,s) to STMA.

LF(1,1,s)

Goal: Reduce LF(1,1,s) to STMA.

Intermediate step:

Reduce LF(1,1,s) to one TM Mi for all subcircuits below the output
gate.

One TM guesses whicht Mi will be used for the simulation.

Still not known:

How to reduce LF(1,s) to STMA.

Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

I A = the number of clauses that are satisfied by negated
variables.

I M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A + M = number of clauses.

Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

I A = the number of clauses that are satisfied by negated
variables.

I M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A + M = number of clauses.

Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

I A = the number of clauses that are satisfied by negated
variables.

I M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A + M = number of clauses.

Reduction of LF(1,s) to STMA:

Construct a TM that guesses an assignment on the tape and then
computes two numbers:

I A = the number of clauses that are satisfied by negated
variables.

I M = the number of clauses that are satisfied only by positive
literals.

Assignment is satisfying iff A + M = number of clauses.

A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑

S ,T⊆P,|S|,|T |≤s
(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑

S ,T⊆P,|S|,|T |≤s
(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

A can be computed as in the antimonotone case.

How to compute M?

Let M(S ,T) be the number of clauses that have exactly all
variables in T as their negative literals and have at least the
variables in S as positive literals.

Then
M =

∑

S ,T⊆P,|S|,|T |≤s
(−1)|S|+1M(S ,T),

if P is the set of variables on the tape.

Definition

Multicolored Clique is the following problem:

Input: A Graph G , nodes colored by k colors

Parameter: k

Question: Is there a k-clique with k colors?

Theorem

Multicolored Clique is W [1]-hard.

Definition

List Coloring (parameterized by treewidth) is the following problem:

Input: A Graph G , nodes have lists of colors

Parameter: treewidth of G

Question: Is there a node coloring with colors from the lists?

Theorem

tw–List Coloring is W [1]-hard.

Definition

Multicolored Grid is the following problem:

Input: A Graph G , nodes colored by {(i , j) | 1 ≤ i , j ≤ k}.

Parameter: k

Question: Is there a k × k-grid whose node at coordinates (i , j) is
colored with (i , j)?

Theorem

Multicolored Grid is W [1]-hard.

Theorem

List coloring is W [1]-hard with parameter treewidth even for planar
graphs.

Definition

An OR-distillation algorithm for a problem L is an algorithm that
transforms (v1, . . . , vt) into w with these properties:

1. runs in polynomial time

2. w ∈ L iff some vi ∈ L

3. |w | polynomially bounded in |vi | for all i

For which problems L do distillation algorithms exist?

Theorem

If an OR-distillation algorithm for an NP-complete problem exists,
then coNP ⊆ NP/poly .

Definition

An OR-distillation algorithm for a problem L is an algorithm that
transforms (v1, . . . , vt) into w with these properties:

1. runs in polynomial time

2. w ∈ L iff some vi ∈ L

3. |w | polynomially bounded in |vi | for all i

For which problems L do distillation algorithms exist?

Theorem

If an OR-distillation algorithm for an NP-complete problem exists,
then coNP ⊆ NP/poly .

Definition

An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), . . . , (vt , k)) into (w , k ′) with
these properties:

1. runs in polynomial time

2. (w , k ′) ∈ L iff some (vi , k) ∈ L

3. k ′ polynomially bounded in k

Theorem

Let L be an NP-complete parameterized problem (where the
parameter is encoded in unary as part of the input). If there is an
OR-composition algorithm for L and L has a polynomial kernel,
then there is also an OR-distillation algorithm for L.

Definition

An OR-composition algorithm for a parameterized problem L is an
algorithm that transforms ((v1, k), . . . , (vt , k)) into (w , k ′) with
these properties:

1. runs in polynomial time

2. (w , k ′) ∈ L iff some (vi , k) ∈ L

3. k ′ polynomially bounded in k

Theorem

Let L be an NP-complete parameterized problem (where the
parameter is encoded in unary as part of the input). If there is an
OR-composition algorithm for L and L has a polynomial kernel,
then there is also an OR-distillation algorithm for L.

Theorem

If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have OR-composition algorithms:

I k-path

I k-cycle

Theorem

If a parameterized problem has an OR-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have OR-composition algorithms:

I k-path

I k-cycle

A similar framework exists for AND-composition and
AND-distillation.

Theorem

If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have AND-composition algorithms:

I treewidth

I pathwidth

A similar framework exists for AND-composition and
AND-distillation.

Theorem

If a parameterized problem has an AND-composition algorithm and
a polynomial kernel, then coNP ⊆ NP/poly .

The following problems have AND-composition algorithms:

I treewidth

I pathwidth

Definition

The k-leaf outbranching problem:

I Input: A directed graph G and a number k

I Parameter: k

I Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

This problem has an OR-composition algorithm, hence no
polynomial kernel.

Definition

The k-leaf outbranching problem:

I Input: A directed graph G and a number k

I Parameter: k

I Question: Does G have a k-leaf outbranching.

An outbranching is a directed out-tree.

This problem has an OR-composition algorithm, hence no
polynomial kernel.

Definition

The rooted k-leaf outbranching problem:

I Input: A directed graph G , a node r , and a number k

I Parameter: k

I Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Definition

The rooted k-leaf outbranching problem:

I Input: A directed graph G , a node r , and a number k

I Parameter: k

I Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Definition

The rooted k-leaf outbranching problem:

I Input: A directed graph G , a node r , and a number k

I Parameter: k

I Question: Does G have a k-leaf outbranching with root r .

No easy to find OR-composition algorithm.

Indeed, there is a k3 kernel for this problem.

(Proof: Very technical with five reduction rules.)

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

Can we “reduce” the k-leaf outbranching problem to the rooted
k-leaf outbranching problem?

Yes and No. Depends on what “reduce” exactly means.

We can take a k-leaf outbranching problem and reduce it to n
instances of rooted k-leaf outbranching.

This is similar to a kernel and is called a “Turing kernel.”

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n + m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n + m)O(1).

The ETH is a complexity theoretic assumption (like P 6= NP).

P 6= NP follows from ETH, but not necessarily the other way
around.

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n + m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n + m)O(1).

The ETH is a complexity theoretic assumption (like P 6= NP).

P 6= NP follows from ETH, but not necessarily the other way
around.

The Exponential Time Hypothesis

We will use this simple form of the Exponential Time Hypothesis
(ETH):

There is a constant α > 0 such that no algorithm can solve 3-SAT
in at most 2αn(n + m)O(1) time.

In particular this implies:

There is no algorithm that solves 3-SAT in 2o(n)(n + m)O(1).

The ETH is a complexity theoretic assumption (like P 6= NP).

P 6= NP follows from ETH, but not necessarily the other way
around.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let φ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let φ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let φ be a 3-SAT instance with n variables m clauses.

We can reduce it to an IS instance with 3m vertices.

This can be solved in 2o(3m) = 2o(m) time.

It does not contradict the ETH.

The Sparsification Lemma

Theorem

For ε > 0 and an integer r > 0 there is a constant c such that:

1. For every r -CNF formula φ with n variables there is a
disjunction ψ of at most 2εn many r -CNF formulas in which
every variable occurs in at most c clauses.

2. φ is satisfiable iff ψ is satisfiable.

3. ψ can be computed in 2εnnO(1) time.

Subexponential time lower bounds

Assume that we can solve Indepented Set in 2o(n) steps (where n is
the number of vertices).

How fast can we then solve 3-SAT by reducing it to an IS instance
and solve this instance with the above subexponential time solver?

Let φ be a 3-SAT instance with n variables m clauses.

Use the sparsification lemma to get formulas ψi .

The length of each ψi is only O(n).

Turn each ψi into an IS instance with O(n) vertices.

Solve them in 2o(n) steps.

Lower bounds on parameterized problems

If we can reduce 3-SAT to a parameterized problem L such that
the parameter is bounded by O(n + m), then L cannot be solved in
time 2o(k)poly(n) (under ETH).

Proof: Assume otherwise. Then we can solve 3-SAT in time
2o(n+m), which contradicts ETH:

First transform a 3-SAT instance I into an L-instance (x , k). Then
|x | = poly(|I |) and k = O(n + m). This takes polynomial time.

Then solve (x , k) ∈ L in time

2o(k)poly(|x |) = 2o(n+m)poly(n + m) = 2o(n+m).

Corollary: Vertex Cover and Feedback Vertex Set (and many other
problems) cannot be solved in time 2o(k)poly(n) under ETH.

Planar 3-SAT

The incidence graph of a 3-SAT formula has a node for each clause
and a node for each variable. There is an edge if the variable
occurs in a clause.

Planar 3-SAT consists of all satisfiable 3-SAT instances whose
incidence graph is planar.

We can reduce in polynomial time a 3-SAT with n variables and m
clauses to a Planar 3-SAT instance with O((n + m)2) clauses and
variables.

Proof idea: Replace each crossing by a planar crossover gadget.
There are at most nm crossings.

Planar 3-SAT

We cannot solve Planar 3-SAT in time 2o(
√
n) under ETH.

Proof: Assume otherwise. Take a 3-SAT instance with n variables
and O(n) clauses and transform it into a Planar 3-SAT instance

with O(n2) variables. Then solve it in 2(o
√
n2) = 2o(n) time.

Contradiction.

Corollary: We cannot solve Planar Vertex Cover and Planar

Dominating Set in time 2o(
√
k)poly(n) under ETH.

An artificial problem

The problem k × k-clique:

Input: Graph G with V (G) = {1, . . . , k}2

Parameter: k

Question: Is there a k-clique with one vertex from “each row”?

Lemma

k × k-clique cannot be solved in 2o(k log k) under ETH.

Suppose otherwise. Then we can solve 3-coloring in 2o(n).

Proof idea: Given a graph G with n nodes.

Let k be the smallest number with 3n/k+1 ≤ k .

(Then k log k = O(n) and n/k = O(log n).)

Evenly partition vertices of G into X1, . . . ,Xk .

Construct graph with proper 3-colorings of Xi ’s as vertices and an
edge between “compatible” colorings.

There is a special k-clique iff G is 3-colorable.

Lower bound can be transferred to closest string:

Under ETH closest string cannot be solved in 2o(m logm) = mo(m).

Lower bounds for hard problems
k-clique (and k-independent set) cannot be solved in f (k)no(k)

steps for any computable f .

Proof idea: Assume otherwise and let, e.g., f (k) = 2k .

Then choose k = log n (or, in general k = f −1(n).

Split a graph G with n vertices into k groups of almost same size.

Build a new graph H whose vertices are valid 3-colorings of the
groups. There is an edge between two vertices if their colorings are
compatible.

The size of H is at most N = k3n/k . H has a k-clique iff G is
3-colorable.

Find such a clique in time No(k) = (k3n/k)o(k) = 2o(n).

We can therefore find out whether G is 3-colorable in time 2o(n).
Contradiction.

The Strong Exponential Time Hypothesis (SETH)

Let δr be the infimum of all δ′r for which an algorithm exists that
solves r -SAT in time O(2δ

′
rn).

ETH: δ3 > 0

SETH: limr→∞ δr = 1

SETH implies ETH. (why?)

ETH implies W[1] 6= FPT. (why?)

The faith into SETH is smaller than into ETH.

There are fewer results for SETH than for ETH.

Lower bound for algorithms on tree decompositions

We have seen that Independent Set can be solved in time 2knO(1)

if the input is a tree decomposition of width k .

Under SETH we cannot solve this problem in time (2− ε)knO(1)

for any ε > 0.

Proof idea: For a given CNF-SAT formula φ with n variables and
m clauses construct a graph G with path-width n + 3 and size
O(n3m).

G has an independent set of a given size iff φ is satifiable.

If we can find a maximal independent set in time (2− ε)n+3|G |O(1),
then we solve CNF-SAT in time (2− ε)n|φ|O(1) and SETH fails.

Connect gadget for every clause.

One connection has to go to an empty vertex.

Repeat n + 1 times to avoid cheating.

Overview

Introduction

Parameterized Algorithms

Further Techniques

Parameterized Complexity Theory

Advanced Techniques

Spanning trees

1. Minimum weight spanning tree → polynomial time

2. Maximum leaf spanning tree → NP-complete

Spanning trees

optimal?

1. Minimum weight spanning tree → polynomial time

2. Maximum leaf spanning tree → NP-complete

Spanning trees

optimal!

1. Minimum weight spanning tree → polynomial time

2. Maximum leaf spanning tree → NP-complete

Maximum Leaf Spanning Trees

We consider this problem:

I Input: An undirected graph G and a number k

I Question: Does G contain a spanning tree with at least k
leaves?

Applications: Operations research, network design

A simpler problem

How to turn a k-leaf tree into a k-leaf spanning tree:

A simpler problem

How to turn a k-leaf tree into a k-leaf spanning tree:

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Known Results

APX-hard Galbiati, Maffioli, Morzenti, 1994
2-approximation Solis-Oba, 1998
3-approximation Lu & Ravi, 1998
1.5-approximation (cubic) Bonsma & Zickfeld, 2008
O((17k)! (n + m)) Bodlaender, 1993

(2k)4knO(1) Downey & Fellows, 1995
O(14.23k + n + m) Fellows, McCartin, Rosamond, Steege, 2000
O(9.49kk3 + n3) Bonsma, Brueggemann, Woeginger, 2003
O(8.12kk3 + n3) Estivill-Castro, Fellows,

Langston, Rosamond, 2005
O∗(1.94n) Fomin, Grandoni, Kratsch, 2006

6.75kkO(1) + nO(1) Bonsma & Zickfeld, 2008

4kk2 + nO(1) Much simpler algorithm!

Directed Graphs

Directed Maximum Leaf Out-Tree (DMLOT) problem:

I Input: A directed graph G and a number k

I Question: Does G contain an out-tree with at least k leaves?

Directed Maximum Leaf Spanning Tree (DMLST) problem:

I Input: A directed graph G and a number k

I Question: Does G contain an out-tree with at least k leaves
that spans all nodes?

Directed Graphs

Directed Maximum Leaf Out-Tree (DMLOT) problem:

I Input: A directed graph G and a number k

I Question: Does G contain an out-tree with at least k leaves?

Directed Maximum Leaf Spanning Tree (DMLST) problem:

I Input: A directed graph G and a number k

I Question: Does G contain an out-tree with at least k leaves
that spans all nodes?

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Example
Open for a long time: DMLOT and DMLST in FPT?

Best directed out-tree: 3 leaves

Best directed spanning tree: 1 leaf

DMLOT 6= DMLST

We cannot extend an out-tree into a spanning tree!

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, ICALP 2007

Theorem

G has either a k-leaf out-tree or its pathwidth is bounded by 2k2.

We call this a win-win scenario.

→ solve DMLOT in time ck
3 log knO(1).

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, ICALP 2007

Theorem

G has either a k-leaf out-tree or its pathwidth is bounded by 2k2.

We call this a win-win scenario.

→ solve DMLOT in time ck
3 log knO(1).

Known results — directed graphs

Alon, Fomin, Gutin, Krivelevich, Saurabh, FST&TCS 2007

Some improvements by the same authors:

DMLOT in ck
2 log knO(1) time

DMLOT in ck log knO(1) time for acyclic graphs

(Improved bounds on the pathwidth.)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

Results — directed graphs

Bonsma & Dorn, 2007:

DMLST in ck
3 log knO(1) time

Bonsma & Dorn, 2008:

DMLST and DMLOT in ck log knO(1)

Now:

DMLST and DMLOT in O(4knm)

A simple algorithm to find k-leaf trees

Idea: Start at some node and grow a tree.

Run the following algorithms on all nodes v :

I mark v blue.

I Repeat:
Choose a blue leaf u.

(a) Mark it red
OR
(b) Connect u’s outside neighbors to u and mark them blue

if the tree has ≥ k leaves, then answer YES
if there is no blue leaf, answer NO

(Outside neighbor: Neighbor that is not yet in the tree)

A simple algorithm to find k-leaf trees
Idea: Start at some node and grow a tree.

Run the following algorithms on all nodes v :

I mark v blue.

I Repeat:
Choose a blue leaf u.

(a) Mark it red
OR
(b) Connect u’s outside neighbors to u and mark them blue
(if deg(u) = 1 follow the path)

if the tree has ≥ k leaves, then answer YES
if there is no blue leaf, answer NO

(Outside neighbor: Neighbor that is not yet in the tree)

Example

I We grow a tree.

I A blue leaf can be expanded.

I A red leaf remains a leaf.

Example

I We grow a tree.

I A blue leaf can be expanded.

I A red leaf remains a leaf.

Example

I We grow a tree.

I A blue leaf can be expanded.

I A red leaf remains a leaf.

Example

I We grow a tree.

I A blue leaf can be expanded.

I A red leaf remains a leaf.

Example

I We grow a tree.

I A blue leaf can be expanded.

I A red leaf remains a leaf.

We can’t grow every tree

Is the algorithm correct?

Correctness
Theorem

If there is a k-leaf tree, the algorithm finds some k-leaf tree.

Proof: Modify a k-leaf spanning tree.

This theorem holds for directed graphs, too ⇒ DMLOT.

Correctness
Theorem

If there is a k-leaf tree, the algorithm finds some k-leaf tree.

Proof: Modify a k-leaf spanning tree.

This theorem holds for directed graphs, too ⇒ DMLOT.

A very useful theorem

Theorem

Let G contain a directed spanning tree with root r .

Then every out-tree with root r can be extended into a spanning
tree.

Proof

Use the spanning tree to extend the out-tree.

x1 x1 x1

⇒ the algorithm solves DMLST, too.

Running time (FPT)

In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.

I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)

In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.

I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)

In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.

I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)

In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.

I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Running time (FPT)

In every step one of the following happens:

I No recursive branch. Tree grows. Number of red and blue
leaves does not change.

I A blue leaf becomes a red leaf.

I The number of blue leaves is increased.

Let r be the number of red leaves and b be the number of blue
leaves.

Then the function 2r + b grows in each recursive call.

If 2r + b ≥ 2k , the algorithm terminates.

The recursion depth is at most 2k and there are at most 22k

recursive calls.

Kernelization on sparse graph classes

I Framework for planar graphs
Guo and Niedermeier: Linear problem kernels for NP-hard
problems on planar graphs

I Meta-result for graphs of bounded genus
Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and
Thilikos: (Meta) Kernelization

I Meta-result for graphs excluding a fixed graph as a minor
Fomin, Lokshtanov, Saurabh and Thilikos: Bidimensionality
and kernels

I Here: Meta-result for graphs excluding a fixed graph as a
topological minor

FPT algorithms for F -Deletion
The F-Deletion problem:

Input: A graph G , an integer k

Question: Is there a set X ⊆ V (G) of size at most k such that
G − X contains no graph from F as a minor?

I Many special results, e.g. F = {K4}
I F contains a planar graph: FPT by Robertson-Seymour

Fellows and Langston: Nonconstructive tools for proving
polynomial-time decidability

I 2O(k log k)n2-Algorithm for Planar-F-Deletion, later improved
to 2O(k)n2 if F contains only connected graphs
Fomin, Lokshtanov, Misra and Saurabh: Nearly optimal FPT
algorithms for Planar-F-Deletion / Planar-F-Deletion:
Approximation and Optimal FPT Algorithms

I Here: a 2O(k)n2 algorithm for Planar-F-Deletion even if F
contains disconnected graphs

Protrusion

Definition

X ⊆ V (G) is a t-protrusion if

1. |∂(X)| = |N(X) \ X | ≤ t (small boundary)

2. tw(G [X]) ≤ t (small treewidth)

Protrusion replacement

I We want to replace a large protrusion by something smaller

I Possible if problem has finite integer index

I Recursive structure of graphs of small treewidth (i.e.
protrusion) helps

I Lots of technicalities omitted. . .

Minors, top-minors

Graphs excluding a fixed Minor/Top-Minor:

I d-degenerate (d depends on the excluded graph)

I closed under taking minors/top-minors

⇒ every minor/top-minor also d-degenerate

Minors, top-minors

Graphs excluding a fixed Minor/Top-Minor:

I d-degenerate (d depends on the excluded graph)

I closed under taking minors/top-minors

⇒ every minor/top-minor also d-degenerate

Protrusion decomposition

(α, t)-Protrusion decomposition is a partition
V = Y0] Y1] · · ·] Y` such that:

1. for 1 ≤ i ≤ `, N(Yi) ⊆ Y0

2. ` ≤ α and |Y0| ≤ α
3. for 1 ≤ i ≤ `, Yi ∪ N(Yi) is a t-protrusion

...in H-topological minor free graphs

Lemma

Let G exclude H as a topological minor and let X ⊆ V (G) be such
that tw(G − X) ≤ t. Then G has a (O(|X |), 2t + |H|)-protrusion
decomposition.

I Can be computed in linear time if X is given

I X is called a treewidth-t modulator

Proof sketch

I Given X such that tw(G − X) ≤ t

I Group components of G − X by respective neighbourhood in
X and obtain Y1, . . . ,Y`

Proof sketch

I From bottom up, mark bags whose subtree induces
component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can
construct K|H| and thus H as a top. minor

I Mark LCA bags also

Proof sketch

I From bottom up, mark bags whose subtree induces
component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can
construct K|H| and thus H as a top. minor

I Mark LCA bags also

Proof sketch

I From bottom up, mark bags whose subtree induces
component with more than |H| neighbours in X

I Number of such bags at most linear |X |: otherwise we can
construct K|H| and thus H as a top. minor

I Mark LCA bags also

Proof sketch

I Add content of bags to X to obtain Y0, by previous
observations |Y0| = O(|X |)

I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for
1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

Proof sketch

I Add content of bags to X to obtain Y0, by previous
observations |Y0| = O(|X |)

I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for
1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

Proof sketch

I Add content of bags to X to obtain Y0, by previous
observations |Y0| = O(|X |)

I LCA marking ensures that now |N(Yi)| ≤ 2t + |H| for
1 ≤ i ≤ `

⇒ Each Yi now a (2t + |H|)-protrusion!

The theorem

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,
(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,
Edge Dominating Set, Connected Vertex Cover

The theorem

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,
(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,
Edge Dominating Set, Connected Vertex Cover

The theorem

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,
(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,
Edge Dominating Set, Connected Vertex Cover

The theorem

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is
treewidth-boundinga and has finite integer indexb. Then Π admits
a linear kernel.

a) A parameterized graph problem is treewidth-bounding if every
yes-instance contains a O(k)-sized treewidth-t-modulator for some
fixed t

b) Also required by all previous results

I Holds for e.g. Feedback Vertex Set, Chordal Vertex Deletion,
(Proper) Interval Vertex Deletion, Cograph Vertex Deletion,
Edge Dominating Set, Connected Vertex Cover

Treewidth-bounding?

Planar “Distance-property”

Bounded Genus Quasi-compact

H-Minor-Free

H-Topological-
Minor-Free

Treewidth-bounding

Bidimensional
+ separation property

Ealier properties imply treewidth-bounding!

Treewidth-bounding?

Planar “Distance-property”

Bounded Genus Quasi-compact

H-Minor-Free

H-Topological-
Minor-Free

Treewidth-bounding

Bidimensional
+ separation property

Ealier properties imply treewidth-bounding!

Proof idea

I Problem is treewidth-bounding: there exists a
treewidth-t-modulator (if it is a yes-instance)

I Exhaustively reduce all (2t + |H|)-protrusions in polynomial
time

⇒ Every such protrusion has now constant size

I There exists a (O(|X |), 2t + |H|)-protusion-decomposition:
only need to bound number of clusters ` (idea: too many would

create an |H| as a topological minor)

The theorem

Planar-F-Deletion:

Input: A graph G , an integer k

Problem: Is there a set X ⊆ V (G) of size at most k such that
G − X contains no graph from F as a minor?

Theorem

Let F be a fixed finite family of graphs containing at least one
planar graph. There exists an algorithm to solve Planar-F-Deletion
in time 2O(k) · n2.

Considerations

I No finite state property, because F can contain disconnected
graphs

⇒ Protrusion reduction not possible!

I As F contains a planar graph, a solution X will fullfill
tw(G − X) ≤ t for some constant t

⇒ Use iterative compression to have solution X ′ that works as a
treewdith modulator

I But: We are working on general graphs! Bounds for
H-(topological)-minor-free graphs do not apply!

Algorithm outline

From iterative compression: got solution X , |X | ≤ k + 1 and want
disjoint solution X̃ , |X̃ | ≤ k.

I Given X , obtain (|X |, t)-protrusion-decomposition
Y0] Y1] · · ·] Y`, where t depends on F

I Guess intersections I of X̃ with Y0 (in time 2O(k))

I New solution X̃ can intersect at most ≤ k clusters

⇒ Disregarding those ≤ k clusters, G − I is H-minor-free!

⇒ ` = O(k) or we have a no-instance

Using a the finite state property of solutions sets inside the
protrusions we can enumerate all necessary vertex sets in 2O(k)

time (quite technical)

Adding Recursion to Color-Coding

Idea:

1. Randomly color G in black and white.

2. Recursively check for a black dk/2e-node path and a white
bk/2c-node path that combine to form a k-node path in G .

1

2 3

4

5

6

7

8 9

10 11

Adding Recursion to Color-Coding

Idea:

1. Randomly color G in black and white.

2. Recursively check for a black dk/2e-node path and a white
bk/2c-node path that combine to form a k-node path in G .

1

2 3

4

5

6

7

8 9

10 11

The Algorithm for Longest Path

Crucial details:

1. Try 3 · 2k colorings in each call.

2. Return all the (u, v) ∈ V 2 with u
k−→ v that were found.

1

2 3

4

5

6

7

8 9

10 11

Combine black (u, x) and white (y , v) into new (u, v) if {x , y} ∈ E

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k
.

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2
·2k+1 ≤ e−

3
2 <

1

4
.

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k
.

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2
·2k+1 ≤ e−

3
2 <

1

4
.

Error Probability

Sources of error:

1. Bad coloring: = 1− 2−k

2. Good coloring, error in recursion: ≤ 2−k · 2 · pdk/2e

pk : Pr[algorithm misses needed (u, v) with u
k−→ v]

Due to the 3 · 2k iterations, pk ≤
(
1− 2−k + 2−k+1pdk/2e

)3·2k
.

Proof that pk ≤ 1/4: p1 = 0, and by induction

(
1− 2−k + 2−k+1pdk/2e

)3·2k ≤
(
1− 2−k−1)

3
2
·2k+1 ≤ e−

3
2 <

1

4
.

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

Total Running Time

Number of recursive calls:

Tk ≤ 3 · 2k(Tdk/2e + Tbk/2c) ≤ 3 · 2k+1Tdk/2e

Observe that

k + dk/2e+ ddk/2e/2e+ · · ·+ 1 ≤ 2k + log k .

Total running time:

O(3log k22k+2 log k) = O(k log 3k24k) = O∗(4k)

