Analysis of Algorithms WS 2022 Prof. Dr. P. Rossmanith M. Gehnen, H. Lotze, D. Mock

Date: 16 February 2023

Old Exam (2014) with solutions 0

This is an old exam from 2014.

Task T1

Consider the following algorithm for searching an array $a[1, \ldots, n]$ for an element x. We assume that the array is sorted in increasing order and that the element x is at some random location in the array. Let B_n be the expected number of comparisons on an n-element array. Write down a recurrence for B_n . What is B_3 ?

Algorithm: Binary Search with randomly chosen pivot element

- 1. Choose randomly and with uniform probability an $i \in \{1, \ldots, n\}$.
- 2. If a[i] = x, output *i* and halt.
- 3. Continue recursively on the left subarray, if x < a[i], or the right subarray, if x > a[i].

Solution

There are two cases to consider here: The first is that the element x is found at the randomly chosen location i. This happens with a probability of 1/n. With a probability of 1 - 1/n, the search continues and the element is found at the recursive step. Now if the element x is found at the recursive step then the expected number of comparisons made is:

$$1 + \frac{1}{n} \left(\sum_{k=1}^{n} \frac{k-1}{n-1} B_{k-1} + \sum_{k=1}^{n} \frac{n-k}{n-1} B_{n-k} \right).$$

This may be explained as follows: In this case, one comparison is made and the search is carried on in either the left or right subarray. Now the probability that the index chosen is k is 1/n. The probability that the element being searched for is in the left subarray is (k-1)/(n-1), since there are n-1 possibilities and there are k-1 of them to the left. The last term above is the expected number of comparisons made if the element is in the right subarray. Now the expected number of comparisons is:

$$B_n = \frac{1}{n} + \frac{n-1}{n} \left(1 + \sum_{k=1}^n \left(\frac{k-1}{n-1} B_{k-1} + \frac{n-k}{n-1} B_{n-k} \right) \right).$$

This may be written as follows:

$$B_n = 1 + \frac{2}{n^2} \sum_{k=0}^{n-1} k B_k.$$

Now, $B_1 = 1$, $B_2 = \frac{3}{2}$, and $B_3 = \frac{17}{9}$.

Task T2

An alphabet Σ consists of two numeric characters 1, 2 and four alphabetic characters a, b, c, d. Find and solve a recurrence relation for the number of words of length n in Σ^* , where there are no consecutive (identical or distinct) numeric characters.

Solution

Let the number of *n*-length strings be A_n . Then $A_0 = 1$ and $A_1 = 6$. If the first letter is alphabetic, then there are $4A_{n-1}$ strings. If the first letter is numeric, then the second letter must be alphabetic and there are $8A_{n-2}$ strings. Thus the recurrence we are seeking is:

$$A_n = 4A_{n-1} + 8A_{n-2}$$
, with $A_0 = 1$ and $A_1 = 6$.

Task T3

Find an expression for

$$[z^n]\frac{1}{(1-z)^2}\ln\frac{1}{1-z}.$$

Your solution can include a sum!

Solution

Define $\bar{H}_n = 0$ if n = 0 and $\bar{H}_n = H_n$ for $n \ge 1$. We may write down the given function as:

$$\frac{1}{(1-z)^2} \ln \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \sum_{n=0}^{\infty} \bar{H}_n z^n$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \bar{H}_k z^n.$$

Thus the coefficient of z^n is $\sum_{k=0}^n \bar{H}_k$.

Task T4

Sort the series with the following generating functions by their asymptotic growth. Justify your steps!

1. $A(z) = \frac{1}{\sqrt{2-\frac{1}{z}}}$. 2. $B(z) = \frac{z}{2-3z+z^2}$. 3. $C(z) = \frac{e^{-z-z^2/2}}{1-z}$.

Solution

We first determine the exponential growth of each series. Maybe we can derive an order from it.

The dominant singularity of A(z) is 1/2, hence $A_n \approx 2^n$.

The series B(z) has the singularities 1 and 2. Hence $B_n \approx 1$.

The dominant singularity of C(z) is 1, so $[z^n]C(z)$ has the same exponential growth.

So far we have determined that $[z^n]A(z)$ grows faster asymptotically than the other two. Now we have to compare both in more detail using singularity analysis.

As 1 is a singularity of first order, we compute $\lim_{z\to 1}(1-z)B(z)$ which is 1. Hence we get $B_n = 1 + o(1)$. Doing the same for C(z) we get that $\lim_{z\to 1}(1-z)C(z)$ is $e^{-3/2}$ and $C_n = e^{-3/2} + o(1)$ which is asymptotically smaller than B_n .

Hence we get that following order of asymptotic growth: $C_n \leq B_n \leq A_n$.