Analysis of Algorithms WS 2022 Prof. Dr. P. Rossmanith M. Gehnen, H. Lotze, D. Mock

Date: January 9, 2023

Exercise Sheet 09

Due date: next tutorial session, preferably in groups If $\int_{1}^{n} |f^{(i)}(x)| dx$ exists for $1 \le i \le 2m$, then

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x) \, dx + \frac{1}{2} f(n) + C + \sum_{k=1}^{m} \frac{B_{2k}}{(2k)!} f^{(2k-1)}(n) + R_m,$$

where $R_m = O\left(\int_1^n |f^{(2m)}(x)| dx\right)$ and $B_k = n! [z^n] z / (e^z - 1)$ are the Bernoulli-numbers:

n	0	1	2	3	4	5	6
B_n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$

Tutorial Exercise T9.1

Approximate the following sum up to an error of $O(n^{-5})$:

$$\sum_{k=1}^{n} \frac{1}{k^2}$$

Find the constant C in Euler's summation formula by looking up $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Test your result for n = 1000. Use your favorite computing software.

Tutorial Exercise T9.2

If you use Euler summation on a polynomial function, can you get an *exact* solution? Prove it or find a counterexample.

Homework Exercise H9.1

Approximate the following sum up to an error of $O(n^{-5})$:

$$\sum_{k=1}^{n} \frac{1}{k^{5/2}}$$

Homework Exercise H9.2

Find a function f(n) in closed form such that

$$\prod_{k=1}^{n} k^{k} = f(n)(1 + O(1/n^{2})).$$

Use Euler summation. It is okay if you cannot find the correct constant in the sum.