Analysis of Algorithms WS 2022 Prof. Dr. P. Rossmanith M. Gehnen, H. Lotze, D. Mock

Date: December 12, 2022

Exercise Sheet 07

Tutorial Exercise T7.1

Compute the generating functions of the following series:

(a)
$$a_n = 2^n + 3^n$$
 (b) $b_n = (n+1)2^{n+1}$ (c) $c_n = \alpha^n {k \choose n}$
(d) $d_n = n-1$ (e) $e_n = (n+1)^2$

Tutorial Exercise T7.2

Compute:

(a)
$$[z^n] \frac{1}{1+2z}$$
 (b) $[z^n] \frac{z+1}{z-1}$ (c) $[z^n] \left(\frac{z+1}{z-1}\right)^2$ (d) $[z^n] \frac{1}{\sqrt[3]{5+z}}$

Homework Exercise H7.1

Let A(z) and B(z) be the OGFs of two series a_n and b_n . The convolution $c_n = (a_n)_{n=0}^{\infty} * (b_n)_{n=0}^{\infty}$ of a_n and b_n is defined as

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

For example,

$$(n)_{n=0}^{\infty} * (3^n)_{n=0}^{\infty} = \left(\sum_{k=0}^n k 3^{n-k}\right)_{n=0}^{\infty}$$

Prove that the OGF of the convolution of a_n and b_n is A(z)B(z).

Homework Exercise H7.2

Solve this recurrence using generating functions:

$$a_n = 2a_{n-1} + 3a_{n-2}$$

and $a_0 = 0, a_1 = 2$.