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Exercise Sheet with solutions 03

Due date: next tutorial session

Tutorial Exercise T3.1

If a flow diagram consists of n nodes and m edges, how many fundamental cycles do we get?

Solution

Any spanning tree of a graph on n nodes has to use exactly n− 1 edges. that means that there
are m− (n− 1) edges that are not part of the spanning tree. Since every edge not part of the
spanning tree is part of exactly one fundamental cycle we get m − n + 1 many fundamental
cycles.

Tutorial Exercise T3.2

Prove or disprove: In every flow diagram you can find a spanning tree such that all fundamental
cycles contain only edges that are labeled with plus.

Solution

Consider a part of a program that contains an if-else–statement.

A spanning tree of that structure always has one edge not part of the tree, no matter what
edge is selected, we always have to use the two edges of the other side in the opposite direction.
So without loss of generality let e1 be the non tree edge, e2 the edge on the same side (either
before or after e1) and e3 and e4 the two edges on the other side. We get

C1 = e1 + e2 − e3 − e4

Which thereby disproves the conjecture.

Tutorial Exercise T3.3

In this exercise, we consider Prim’s Algorithm, which computes a minimum spanning tree. The
input to this algorithm is a graph G = (V,E), a weight function on the edges w : E → R and
a starting node r.
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1 for each u ∈ V do
2 key[u]←∞
3 π[u]← NIL
4 key[r]← 0
5 M ← V
6 while (M 6= ∅) do
7 u← min-from(M)
8 for each v ∈ neighbors(u) do
9 if (v ∈M) ∧ (w(u, v) < key[v]) then

10 π[v]← u
11 key[v]← w(u, v)

Construct the control flow graph, a spanning tree in the control flow graph, the fundamental
cycles, a corresponding linear system of equations and a solution to this system.

Solution

The flow diagram is depicted below. The for-loops were changed, since the initializing and
iteration condition must be separated.
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M ← V

|M | > 0

u← any-from(M)

key[u]←∞
π[u]← NIL

key[r]← 0

M ← V

|M | > 0

π[v]← u

key[v]← w(u, v)

w(u, v) < key[v]

v ∈M
v ← any-from(N)

|N | > 0

N ← neighbors(u)

u← min-from(M)
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We choose the spanning tree e1, e2, e4, e5, e6, e7, e8, e9, e10. This yields the following fundamental
cycles:
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C0 = e0 + e1 + e4 + e5

C3 = e3 + e2

C11 = e11 + e8 + e9

C12 = e12 + e8 + e9 + e10

C13 = e13 + e8

C14 = e14 + e6 + e7

We now use standard linear algebra to find a good set of blocks whose number of visits we need
to compute: By Ei, 0 ≤ i ≤ 14, we denote the number of times the program flow visits the edge
ei. With each fundamental cycle above we identify a vector Ci. Then the Ei can be written as
a linar combination of the fundamental cycles, i.e.,

(C0, C3, C11, C12, C13, C14)


λ1
λ2
λ3
λ4
λ5
λ6

 =



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




λ1
λ2
λ3
λ4
λ5
λ6

 =



E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E13


for appropriate values of λ1, . . . , λ6. We select six independent rows and obtain the equation

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




λ1
λ2
λ3
λ4
λ5
λ6

 =


E0

E2

E11

E12

E13

E14

 =


1
C

I − J
J

H − I
G−H

 .

This means, we only need to compute the values of C,G,H, I, J for a complete analysis (E0 = 1
is trivally known), and then all other values can be derived: We see that E0 = E1 = E4 = E5,
E2 = E3, E6 = E7 = E14, E10 = E12. This implies A = 1, B = E1 + E3 = C + 1, D = E4 = 1,
E = E5 + E14 = 1 +G−H, F = E6 = G−H.

Homework Exercise H3.1

Consider the following program:

int sel_sort ( int a[], int n ) {

for ( int i = 0; i < n; ++i ) {

int min = i;

for ( int j = i; j < n; ++j ) {

if ( a[j] < a[min] ) {
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min = j;

}

}

int temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

The input to this program is an array a[0, . . . , n − 1] that contains n pairwise distinct integer
keys in random order.

a) Explain how this program sorts the given array.

b) Analyse how often each instruction of the program is executed on average depending on n.

c) There is only one instruction whose analysis is not trivial. Which one is it?

Make a table for small values of n by hand that lists the results for this instruction.
Compare the table entries with the results from your closed formula that you obtained
in b).

Solution

The algorithm is, as indicated by the name, selection sort: it finds the minimal element of the
yet-to-be-sorted part and appends it to the sorted part by exchange.

For part b), the outer loop is execute n times, therefore each statement not in the inner loop is

executed that often. The if-statement is executed exactly n(n+1)
2

times, which leaves the min = j
statement.

The first comparison (j = i to i) always fails, therefore the expected number of executions (cf.
Problem T1) then is

n−1∑
i=0

n−1∑
j=i+1

1

j − i+ 1
=

n−1∑
i=0

n−i−1∑
j=1

1

j + 1
=

n−1∑
i=0

(Hn−i − 1) = (n+ 1)Hn − 2n.

Homework Exercise H3.2

Try to solve the following puzzle: How many subsets of {1, . . . , 2000} have a sum divisible by
5?

Solution

The problem seems to be quite hard to solve with our combinatorial techniques. In a few weeks,
you will learn a technique that will make this task pretty simple.

4


