
Analysis

of

Algorithms

Peter Rossmanith

Institute for Theoretial Computer Siene

RWTH Aahen

Leture Notes and Exerises, Winter 2022

commit 516bdfa2019da47b7cbdfde51679f6cfc53c47fd

Merge: a9b2900 b5bf781

Author: Daniel A. Mock <mock@cs.rwth-aachen.de>

Contents

1 Analysis of Quicksort 1

1.1 The number of partitioning phases 4

1.2 The Number of Comparisons while Partitioning 10

1.3 The number of swaps in the do-loop 10

1.4 The number of insertion phases 11

1.5 Number of swaps during insertion-sort 12

1.6 Conlusion . 14

2 The Kirchhoff laws 21

3 Recurrence relations 27

3.1 Classi�ation of reurrene relations 28

3.2 Creating a table . 29

3.3 Guessing a solution and

proving it by indution . 29

3.4 Looking up the solution . 30

3.5 Mathematia, Maple, Maxima, et. 31

3.6 Hidden produts and sums 33

3.7 Linear reurrene relations with onstant oeÆients 34

3.8 Summation fator . 35

3.9 The Repertoire Method . 37

iii

iv

3.10 Order Redution . 40

3.11 Extrating reurrene relations from algorithms 42

3.12 Searhing an unordered array 45

3.13 Ordered arrays and binary searh trees 49

4 Generating functions 59

4.1 Counting Data Strutures with Generating Funtions . . . 65

4.2 Bivariate Generating Funtions 68

4.3 Exponential Generating Funtions 68

4.4 The Symboli Method . 69

4.5 Average Stak Height . 74

5 Asymptotic Estimations 79

5.1 Euler's summation formula 80

5.2 Singularity Analysis . 82

5.3 Meromorphi funtions . 83

5.4 Algebrai Singularities . 89

5.5 The Saddle Point Method 92

5.6 The Restrited Saddle Point Method 99

A Solutions to Selected Exercises 103

B MIPS Cheat Sheet 125

C Tests 127

Chapter 1

Analysis of Quicksort

We start our journey into the Analysis of Algorithms with an example.

It onsists of a well-known and very eÆient sorting algorithm. We will

see that even a very ompliated algorithm an suessfully be analyzed

mathematially.

This �rst analysis of an algorithm ontains almost every single important

ingredient that may our in typial situations that we may enounter when

we design our own algorithms and try to analyze them. While we just take a

glane on these various aspets in this introdutory hapter, we will revisit

them later on and learn about them in more detail:

1. Before starting to analyze the running time of some algorithm, we

have to understand it ompletly and in every detail; otherwise a pre-

ise analysis is impossible. After having learnt about the purpose

of every single instrution, we have to �nd an intuitive desription

of the number of times this instrution is exeuted. If a blok of

instrution is not interrupted by a branh statement, all instrution

in the blok an be analyzed together. Apart from this very simple

rule we will later enounter several other method on how to redue

the number of instrutions that have to be analyzed individually.

2. If we want to arry out an Average ase analysis, i.e., analyse an

algorithm's expeted behavior, we need a statistial model for the

inputs to model an appropriate probability distribution.

1

2 CHAPTER 1. ANALYSIS OF QUICKSORT

3. With the help of the|up to now|rather vague intuivitve desrip-

tion, we have to �nd a losed formula for the number of exeutions

of eah instrution. Here we have to take the probability distribution

into aount when ounting the expeted rather than the worst ase

number. Often it is impossible to �nd a exat losed formula or it

requires too high an e�ort. In that ase we have to be ontent with

losed, but only approximate, formula.

4. At the end we just have to add the individual times for eah instru-

tion to get the overall expeted running time in relation to the input

length.

The famous Quiksort algorithm is well suited as an introdutory example

beause it is not too trivial and well known. We will onentrate on a

pratial, highly optimized version rather than on a simpli�ed one, whih

you will often �nd in beginners' textbooks.

1

One drawbak of naked quiksort is its bad performane on very small ar-

rays, on whih it is beaten by muh simpler algorithms. Hene, we use a

quiksort variant that partitions (and then reursively sorts) an array only

if its length is bigger than a onstant M. At the end we an use one run

of straight-insertion sort to �nish the job by leaning up the remaining

unsorted short subarrays. Another optimization addresses spae onsump-

tion rathen than running time: After partitioning we sort the smaller of

the two subarrays �rst. This well-known trik keeps the reursion depth

small beause the array size is at least halved in eah reursive all. For

eÆieny reason the reursive alls are simulated by diret alls and the

usage of our own stak. Figure 1.1 ontains a omplete program written in

the language C that implements all ideas mentioned in this paragraph.

We assume that the input onsists of N di�erent numbers and want to

analyze, how often eah instrution in the program is exeuted on average,

if every permutation of the given numbers ours with the same probability.

This is a standard assumption for sorting problems. Initially, the input is

loated in the array a [1],. . . ,a [N] and the sorted sequene is to be found

in the same spot upon program termination.

1

In this sript we follow losely the analysis of Quiksort by Knuth [?℄, whih is de�-

nitely not a beginner's textbook.

3

void quiksort(void)

{
int i , j , l , r , k , t ;
l = 1; r = N ;
if(N > M)

while(1) {
i = l − 1; j = r ; k = a [j];

do {

do { i++; } while(a [i] < k);

do { j−−; } while(k < a [j]);

t = a [i]; a [i] = a [j]; a [j] = t ;

} while(i < j);

a [j] = a [i]; a [i] = a [r]; a [r] = t ;

if(r − i ≥ i − l) {

if(i − l > M) { push(i + 1, r); r = i − 1; }
else if(r − i > M) l = i + 1;
else if(stak is empty) break;

else pop(l , r);
}

else {

if(r − i > M) { push(l , i − 1); l = i + 1; }
else if(i − l > M) r = i − 1;
else if(stak is empty) break;

else pop(l , r);
}

}

for(i = 2; i ≤ N ; i++)

if(a [i − 1] > a [i]) {

k = a [i]; j = i ;

do { a [j] = a [j − 1]; j−−; } while(a [j − 1] > k);

a [j] = k ;

}

}

Figure 1.1: C-program for Quiksort

4 CHAPTER 1. ANALYSIS OF QUICKSORT

You an �nd the whole program a seond time in Figure 1.2, but in a

di�erent layout that reminds of a ow hart. Instrutions that are not

separated by branhes or target of branhes are grouped into bloks. The

program ow is indiated by arrows between the bloks. Next to eah

blok you an �nd a symboli name for the number of times this blok is

exeuted in the form of a variable or a short expression that may involve

several variables.

Let us start by onsidering the variable A. This variable ourres next to

several blok, whih implies that number of exeution for those bloks are

idential.

Why an we use the same variable for the two bloks i = l − 1; j = r ; k =

a [j] and a [j] = a [r]. . . ? The answer is quite simple: The ow into a set

of bloks M must be exatly idential to the ow out of M. The ow is

the program ow, i.e., the ow into a blok is the number of times the

blok is entered and the ow out is the number of times the blok is left.

This situation is quite similar to solenoidal vetor �elds in physis (e.g.,

the magneti �eld) or the eletrial ow in a resistor network.

If the blok i = l−1; j = r ; k = a [j] is exeuted A times, then it will be left

A times. There is only one outgoing arrow from this blok. Let us denote

the set of bloks between i = l−1; j = r ; k = a [j] and a [j] = a [r]. . . byM.

Then M will be left A times, too, whih is again possible only by one arrow

that leads to the blok a [j] = a [r]; a [i] = a [j]; a [j] = t . We an onlude

that this blok is exeuted exatly A times, too. This line of reasoning

has been relatively easy. We an disover other relationship like this in a

similar way, e.g., that I ′ + I ′′ = 1 or A ′ + A ′′ = A − 1. In this way we

greatly redue the number of independent variables whose value has to be

analyzed.

We will address reduing the number of variables using the ow relations

in a systemati way in Chapter 2.

1.1 The number of partitioning phases

Let us return to the analysis of A. What is the intuition behind this num-

ber? The while-loop in Figure 1.1 is exeuted exatly A times. Eah

1.1. THE NUMBER OF PARTITIONING PHASES 5

l = 1; r = N ;

N > M

i = l − 1; j = r; k = a[j];

i = i+ 1;

a[i] < k

j = j − 1;

k < a[j]

t = a[i]; a[i] = a[j]; a[j] = t;

i < j

a[j] = a[r]; a[r] = a[i]; a[j] = t;

r − j ≥ j − l j − l > M
push(j + 1, r);
r = j − 1;

r − j > M l = j + 1

stack is empty

break;

pop(l, r);

r − j > M
push(l, j − 1);
l = j + 1;

j − l > Mr = j − 1

stack is empty

break;

pop(l, r);

i = 2

a[i− 1] > a[i]

k = a[i]; j = i; a[j] = a[j − 1]; j = j − 1;

a[j − 1] > ka[j] = k;

i = i+ 1;i ≤ N

A

i = i+ 1;C ′

a[i] < kC ′

j = j − 1;C ′′

k < a[j]C ′′

A

A

B +A

B +A

j − l > M

A′′ + I ′′

r − j > M

A′ + I ′

push(j + 1, r);
r = j − 1;

S′′

push(l, j − 1);
l = j + 1;

S′

pop(l, r);

S̄′′

pop(l, r);

S̄′

l = j + 1

A′′ − S′′ − S̄′′

r = j − 1

A′ − S′ − S̄′

r − j > M

A′′ + I ′′ − S′′

j − l > M

A′ + I ′ − S′

stack is emptyS̄′′ + I ′′stack is empty S̄′ + I ′

break; I ′′break;I ′

1

N − 1

N − 1

N − 1

D

D

E

E

C = C ′ + C ′′

number of com-
parisons

C = C ′ + C ′′

number of com-
parisons

number of swapsnumber of swaps

A = A′ + A′′ + 1 number
of partitioning stages
A = A′ + A′′ + 1 number
of partitioning stages

S = S′ + S′′ = S̄′ + S̄′′

number of pushs
S = S′ + S′′ = S̄′ + S̄′′

number of pushs

Figure 1.2: Program ow hart for the Quiksort program

6 CHAPTER 1. ANALYSIS OF QUICKSORT

exeution orresponds to a partitioning of a subarray. Hene, we inter-

pret A as the number of partitioning phases. This intuitive desription is

enormeously helpful. From this point on, we do not have to look at the C-

program anymore, when analysing A. We just have to look at the abstrat

Quiksort algorithm. Even if we hange the C-program the analysis of A

will remain sound|it is the number of partitioning phases that is learly

independent of the onrete implementation.

Let AN be the expeted number of partitioning phases if we sort N keys by

Quiksort. If N > M, the input is partitioned one and three subarrays are

established. The middle one onsists only of the pivot element and will be

left untouhed. The �rst and last subarray will be reursively sorted. This

leads to additional Ak and AN−1−k partitioning phases if the �rst and last

subarray have the length k and N− 1− k. The number k is between 0 and

N − 1. It is easy to see that the probability for eah of those possibilities

is exatly 1/N: We assumed, after all, that every permutation ours with

the same probability. These ideas lead to the following relation:

AN = 1+
1

N

N−1∑

k=0

(Ak +AN−1−k)

= 1+
2

N

N−1∑

k=0

Ak, forN > M

If N ≤ M, on the other hand, then learly AN = 0.

In the following we will enounter many more reurrene relations that look

familiar to this one. We an write all of them as

XN =
2

N

N−1∑

k=0

Xk + fN, forN > M

with di�erent funtions fk. In the ase of AN we have fk = 1.

It is not very hard to solve reurrenes of this form. The �rst problem

we enounter is that XN depends on all X0, . . . , XN−1 instead on only a

small number of di�erent Xi's. To overome this problem, the �rst step

is to turn the reurrene into one of �nite order. We an ahieve that by

subtrating XN−1 from XN after having got rid of the interfering fators 1/N

1.1. THE NUMBER OF PARTITIONING PHASES 7

and 1/(N− 1):

NXN = 2

N−1∑

k=0

Xk +NfN

(N− 1)XN−1 = 2

N−2∑

k=0

Xk + (N− 1)fN−1

Subtration yields

NXN − (N− 1)XN−1 = 2XN−1 +NfN − (N− 1)fN−1

or

NXN = (N+ 1)XN−1 +NfN − (N− 1)fN−1, forN > M+ 1.

This is a linear reurrene of �rst order. Suh reurrenes an routinely be

solved by a tehnique alled summation fator, as we will see later. Here

this tehnique asks us to multiply the equations by 1/N(N+ 1):

XN

N+ 1
=

XN−1

N
+

NfN − (N− 1)fN−1

N(N+ 1)

Using the substitutions

YN =
XN

N+ 1
and gN =

NfN − (N− 1)fN−1

N(N+ 1)

yields the very simple equation

YN = YN−1 + gN, for N > M+ 1.

We an easily solve the reurrene, but have to be areful that it holds only

for N > M + 1. It is a ommon mistake not to trak exatly under whih

onditions derived equations are valid.

YN = YM+1 + gM+2 + gM+3 + · · · + gN = YM+1 +

N∑

k=M+2

gk

and, after substituting bak into the variable XN, we get the solution

XN =
N+ 1

M+ 2
XM+1 + (N+ 1)

N∑

k=M+2

kfk − (k− 1)fk−1

k(k+ 1)
.

8 CHAPTER 1. ANALYSIS OF QUICKSORT

Let us return to the analysis of AN. Here fk = 1 and AM+1 = 1. Replaing

XN and fk aordingly leads to

AN =
N+ 1

M+ 2
+ (N+ 1)

N∑

k=M+2

1

k(k+ 1)

=
N+ 1

M+ 2
+ (N+ 1)

(

N

N+ 1
−

M+ 1

M+ 2

)

=
2N−M

M+ 2
.

We �nally arrived at a losed formula for AN. Do not forget that we proved

this formula only for N > M + 1. We also know that AN = 0 for N ≤ M.

Finally, AM+1 = 1, whih we had to establish earlier in the analysis of AN.

We an write down a losed formula for AN that is valid for all values of N

by using a ase distintion:

AN =

0 if N ≤ M,

1 if N = M+ 1,

2N−M

M+ 2
if N > M+ 1.

Fortunately, however, (2N − M)/(M + 2) = 1 if N = M + 1 and we an

merge the last two ases into one. Our �nal formula, whih hardly an be

simpli�ed more, is

AN =

0 if N ≤ M,

2N−M

M+ 2
if N > M.

Let us hek the validity of this formula on some speial ases. What

happens if N = M + 2? Of ourse, Quiksort partitions the array one.

There are M + 2 di�erent possibilies for hoosing the pivot element and

eah hoie bears a probability of exatly 1/(M + 2). There are exatly

two possible hoies for the pivot that fore the algorithm to arry out a

seond partitioning. This happens only if the pivot element is either the

smallest or the biggest key beause then one of the subarrays has size M.

Hene, with a probability of M/(M+ 2) the algorithm partitions one and

with a probability of 2/(M+ 2) twie. The expeted value is therefore

AM+2 =
M

M+ 2
+ 2

2

M+ 2
=

M+ 4

M+ 2
= 1+

4

M+ 2
.

1.1. THE NUMBER OF PARTITIONING PHASES 9

Let us see, to what our losed formula for AM+2 evaluates:

AM+2 =
2(M+ 2) −M

M+ 2
=

M+ 4

M+ 2
= 1+

4

M+ 2

Of ourse, they oinide. It is advisable to test the outome of a ompliated

analysis that �nally yields a losed formula on some easy speial ases

beause you an have made a mistake.

One �nal remark on the analysis of AN regards the �nal summation we had

to arry out. When solving reurrene relations|espeially when we sim-

plify them in a sequene of steps|very often we end up with a summation.

For this reason, solving summations by providing an exat or approximate

losed form turns out to be very important in the analysis of algorithms.

Here the summation was quite easy to solve. It is a telesopi sum beause

N∑

k=M+2

1

k(k+ 1)
=

N∑

k=M+2

(1

k
−

1

k+ 1

)

and onsequently almost all terms anel eah other. With the advent

of omputer algebra systems, however, learning tehniques how to solve

summations beome less important nowadays. This summation an be

easily solved for us by a system like maxima:

Maxima 5.23.2 http://maxima.sourceforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.

(%i1) nusum(1/(k*(k+1)), k, M+2, N);

N - M - 1

(%o1) ---------------

(M + 2) (N + 1)

If the summation has no losed form we will see how to approximate its

value with very small additional error terms.

10 CHAPTER 1. ANALYSIS OF QUICKSORT

1.2 The Number of Comparisons while Par-

titioning

If we partition a subarray of size N, the indexes i and j point initially to

the begin and end of the subarray. When the riterion i < j is no longer

true, the indexes have rossed over and the partitioning phase is ended.

Whenever i is inreased of j dereased, exatly one omparison is arried

out. In the end i = j + 1 holds (i.e., j − i = −1) and in the beginning

j − i = N − 1. Hene, the di�erene between j and i dereases with eah

omparison from N+1 to −1 and the total number of omparisons it N+1.

This is the number of omparisons in one partitioning phase. The total

expeted number of omparisons in all partitioning phases an be stated

by the reurrene relation

CN = N+ 1+
2

N

N−1∑

k=0

Ck,

whih is again of the general form with fk = k+ 1 and CM+1 = M+ 2.

It is now easy to get a losed formula for its solution using harmoni num-

bers Hn = 1+ 1/2+ 1/3+ · · · + 1/n.

CN = N+ 1+ (N+ 1)

N∑

k=M+2

k(k+ 1) − (k− 1)k

k(k + 1)
=

= N+ 1+ 2(N+ 1)

N∑

k=M+2

1

k+ 1

= N+ 1+ 2(N+ 1)(HN+1 −HM+2)

Very often only the number of omparisons is analyzed in textbooks and

usually M = 1 and all omparisons our while partitioning. If M = 1 this

yields 2(HN+1 − 8/6)(N+ 1) = 2HN+1N− 8
3
N+ o(N).

1.3 The number of swaps in the do-loop

Let BN + 1 the number of swap operations in the do-loop. For eÆieny

reasons|it saves one if-ommand|the algorithm performs one last swap

1.4. THE NUMBER OF INSERTION PHASES 11

that is not neessary and has to be swapped bak.

2

It makes sense to de�ne

BN as the number of real swaps (that are not taken bak) aording to our

philosophy that variables that we analyze have a nie intuitive meaning.

If we partition the array in two subarrays of sizes k and N − 1 − k, then

the expeted number of swaps that have ourred between them is k(N −

1− k)/(N− 1). This gives us the reurrene relation

BN =
1

N

N−1∑

k=0

(

Bk + BN−1−k +
k(N− 1− k)

N− 1

)

=
2

N

N∑

k=0

Bk +
N− 2

6
.

Here fk = (N− 2)/6 and BM+1 = (M− 1)/6. Its solution is

BN =
(N+ 1)(M− 1)

6(M+ 2)
+

(N+ 1)

6

N∑

k=M+2

k(k− 2) − (k − 1)(k − 3)

k(k+ 1)

=
1

6
(N+ 1)

(

2HN+1 − 2HM+2 + 1−
6

M+ 2

)

+
1

2
.

1.4 The number of insertion phases

Let us proeed to DN and ponder what intuition an be found behind this

variable. Whenever a[i − 1] > a[i], the algorithms inserts a[i] into the

already sorted subarray a[1 . . . i−1]. The variable DN tells us exatly, how

often suh an insertion takes plae. We should not forget that this kind of

insertions happen only in the seond phase of the algorithm. We get the

reurrene

DN =
2

N

N−1∑

k=0

Dk

for N > M. We an look at what happens in the seond phase from the

perspetive of the �rst phase. The array of length N is partitioned reur-

sively into smaller and smaller subarrays until their sizes are at most M.

Let us all these �nal subarrays small. At the end of the day DN is the

sum of all Dki's if ki are the length of all small subarrays.

2

As a do-loop is performed at least one and the array might be already sorted and no

swaps should take plae, we annot avoid at least one superuous swap without guarding

it by an if-statement.

12 CHAPTER 1. ANALYSIS OF QUICKSORT

We have a simple reurrene for the ase that N > M, but what happens if

N ≤ M? Let us assume that i is the last index that belongs to the subarray

of length N where N ≤ M. Then the insertion that we want to ount take

plae i� a[i− 1] > a[i] in the for-loop.

How big is the probability that a[i − 1] > a[i]? We have to onsider that

a[1], . . . , a[i − 1] has already been sorted by insertion sort. Before that,

a[1, . . . , i] was in random order. At this point of time a[i− 1] > a[i] i� a[i]

is not the biggest key in a[i −M + 1], . . . , a[i]. It is the biggest key only

if it is bigger than the other i − 1 keys. The probability for this event is

1− 1/i.

By a simple summation we get

DN =

N∑

i=2

(1− 1/i) = N−HN for N ≤ M.

Let us look at some small values that we get from this formula: D0 = 0,

D1 = 0, D2 = 1/2. Are these orret? Yes, only if N ≥ 2 the body of

the for-loop is exeuted at all. If N = 2 then an insertion takes plae if

a[2] > a[1]. This happens with probability

1
2
.

This formula is also the key to get a grip on DM+1, whih we require to get

a losed solution of DN.

DM+1 =
2

M+ 1

M∑

k=0

Dk =
2

M+ 1

M∑

k=0

(k−Hk) = M− 2HM+1 + 2

For N > M the losed formula for DN is:

DN =
N+ 1

M+ 2
DM+1 =

N+ 1

M+ 2
(M+ 2− 2HM+1) = (N+ 1)

(

1−
2HM+1

M+ 2

)

In partiular we see that DN = Θ(N), if M > 1 is a onstant. Hene, only

a linear number of keys is moved to orret the subarrays that were left

unsorted by the �rst phase. This behavior is not surprising.

1.5 Number of swaps during insertion-sort

The seond phase of our highly optimized Quiksort algorithms is|as we

have seen|basially insertion sort. Exatly EN pairs of keys, whih are

1.5. NUMBER OF SWAPS DURING INSERTION-SORT 13

not in the right order, are swapped. After they have been swapped they

are in the right order and stay in this relative order for all times. This

is not exatly how the algorithm works beause of eÆieny reasons the

keys are not pairwise swapped but ylily in larger bloks. The result is,

however, the same and we an pretend they are swapped pairwise, whih

is muh easier to imagine (and therefore analyze).

Whenever two keys are in the wrong order, the E-bloks in Figure 1.2 are

exeuted one. That is exatly the number of inversions of the permu-

tation that sorts the input. An inversion of a permutation is the number

of pairs that are out of order. Formally, if π : {1, . . . , n} → {1, . . . , n} is a

permuation, then

|{ {i, j} | 1 ≤ i < j ≤ n, π(i) > π(j) }|

is the number of inversions of π. Hene we have a very nie intuitive

desription of EN|it is simply the expeted number of inversions of a

random permutation.

A permuation of n keys has n(n − 1)/2 pairs and eah pair of keys has

the wrong order with a probability of 1/2. The probability distribution

nevertheless is quite ompliated beause these events are learly not in-

dependent from eah other. Fortunately, we only need the expeted value

of the number of inversions. Beause of linearity of the expeted value the

result simply is n(n− 1)/4.

Let EN be the number of inversions of the input array after the �rst phase of

the algorithm. Then EN is the number of times the E-bloks are exeuted.

We get this reurrene for EN:

EN =

2

N

N−1∑

k=0

Ek f�ur N > M

1

2

(

N

2

)

f�ur N ≤ M

Again the form of the reurrene is in the familiar shape. Routinely, we

�rst �nd out what EM+1 is:

EM+1 =
2

M+ 1

M∑

k=0

k2

4
=

M(M− 1)

6

14 CHAPTER 1. ANALYSIS OF QUICKSORT

For N > M we get, again following our routine,

EN =
N+ 1

M+ 2
EM+1 =

N+ 1

M+ 2

M(M− 1)

6
.

1.6 Conclusion

You an �nd all results in the following table:

AN =
2N−M

M+ 2

BN =
1

6
(N+ 1)

(

2HN+1 − 2HM+2 + 1−
6

M+ 2

)

+
1

2

CN = N+ 1+ 2(N+ 1)(HN+1 −HM+2)

DN = (N + 1)(1 − 2HM+1/(M+ 2))

EN =
1

6
(N+ 1)M(M− 1)/(M+ 2)

SN = (N + 1)/(2M+ 3) − 1

Figure 1.3 ontains the C-program from �gure 1.1 in the assembler language

of a MIPS-proessor. We hoose this type of proessor for the following

reasons:

1. It is a typial RISC-proessor and representative for proessor used

today and at least in the near future.

2. Among existing proessors it has a relatively easy to learn instrution

set. There are no speial purpose register, no register windows, or

other rather speialized features. You an easily learn all important

instrutions within a few minutes and you an read MIPS assembler

programs immeadiately if you have been exposed to similiar mahine

languages before. This proessor is also used in many embedded

systems and portable omputers today, whih proves that it has a

realisti, real world design.

3. We will also see later that it is not suÆient to analyse a program

written in high level, ompiled language if you are interested what

e�ets small hanges in your algorithm imply. One good example are

1.6. CONCLUSION 15

quiksort:

1 la $7,a

lw $2,sp

li $3,1000

li $5,1

move $13,$7

la $4,s

$L23:

A sll $6,$3,2

addu $6,$7,$6

sll $10,$5,2

lw $14,0($6)

addu $10,$7,$10

addiu $8,$5,-1

j $L3

move $9,$3

$L4:

B+A+C ′
−2 addiu $10,$10,4

move $8,$6

$L3:

C ′
lw $11,0($10)

slt $12,$11,$14

bne $12,$0,$L4

addiu $6,$8,1

B+A addiu $12,$9,-1

sll $12,$12,2

addu $12,$7,$12

$L5:

C ′′
lw $24,0($12)

addiu $9,$9,-1

slt $15,$14,$24

bne $15,$0,$L5

addiu $12,$12,-4

B+A sll $15,$9,2

addu $15,$7,$15

slt $12,$6,$9

sw $24,0($10)

bne $12,$0,$L4

sw $11,0($15)

A sll $14,$6,2

addu $14,$13,$14

lw $9,0($14)

sll $12,$3,2

sw $9,0($15)

addu $12,$13,$12

lw $24,0($12)

subu $10,$3,$6

subu $9,$6,$5

slt $15,$10,$9

sw $24,0($14)

bne $15,$0,$L6

sw $11,0($12)

A ′′
+I ′′

slt $9,$9,4

bnel $9,$0,$L7

S ′′
slt $10,$10,4

addiu $9,$2,1

sll $10,$2,2

sll $9,$9,2

addu $10,$4,$10

addiu $6,$6,1

addu $9,$4,$9

sw $6,0($10)

addiu $2,$2,2

sw $3,0($9)

j $L23

move $3,$8

$L7:

A ′′
+I ′′

−S ′′
beq $10,$0,$L23

addiu $5,$6,1

j $L25

$L6:

A+1−S ′′
slt $10,$10,4

A ′
+I ′

bnel $10,$0,$L10

S ′
slt $9,$9,4

addiu $9,$2,1

sll $10,$2,2

sll $9,$9,2

addu $10,$4,$10

addu $9,$4,$9

sw $5,0($10)

addiu $2,$2,2

sw $8,0($9)

j $L23

addiu $5,$6,1

$L10:

A ′
+I ′

−S ′
beq $9,$0,$L23

move $3,$8

$L25:

�S ′
+�S ′′

+1 beq $2,$0,$L26

addiu $3,$2,-1

�S ′
+�S ′′

addiu $2,$2,-2

sll $3,$3,2

sll $5,$2,2

addu $3,$4,$3

addu $5,$4,$5

lw $3,0($3)

j $L23

lw $5,0($5)

$L26:

1 li $9,1073676288

sw $0,sp

ori $9,$9,0xffff

la $4,a+4

li $2,2

la $7,a

li $8,1001

$L16:

N−1 lw $5,4($4)

lw $3,0($4)

slt $3,$5,$3

beql $3,$0,$L28

D addiu $2,$2,1

addu $3,$2,$9

sll $3,$3,2

addu $3,$7,$3

move $6,$2

$L15:

E lw $10,-4($3)

lw $11,0($3)

slt $10,$5,$10

sw $11,4($3)

addiu $6,$6,-1

bne $10,$0,$L15

addiu $3,$3,-4

D sll $6,$6,2

addu $6,$7,$6

sw $5,0($6)

addiu $2,$2,1

$L28:

N−1 bne $2,$8,$L16

addiu $4,$4,4

1 j $31

Figure 1.3: Assembler listing of our C-program translated into MIPS ma-

hine ode. On the left of eah basi blok you �nd the expeted number

of exeutions expressed by the variables introdued in this hapter.

16 CHAPTER 1. ANALYSIS OF QUICKSORT

sentinel elements whose usage an improve the performane of your

program, but an also slow it down|it really depends on the details.

It you look at an assembler program you an estimate muh better

how long eah instrution takes than in a high level programming

language. For the older, not as sophistiated proessors as today's,

you ould lookup in the hardware manual how many yles eah in-

strution takes. Today this is beoming harder and harder beause

the exeution time depends on so many additional fators. There are,

for example, one or more ahes that speed up the exeution of a read

instrution from memory tremendously if its data value an be found

in the ahe. To analyze the ahe behavior is not easy (although

you an good data from simulations). The deep pipelining of instru-

tions, branh predition strategies, speulative omputing, and super

salarity are further examples of moderns features that make the ex-

at estimate of the duration of a spei� mahing instrution very

hard. Nevertheless, the rule of thumb that one mahine instrution

of a RISC proessor takes one yle is still very good|that was af-

ter all one of the original design goal when RISC arhitetures were

introdued.

Appendix B ontains a short desription of most MIPS instrutions. You

an easily �nd more detailed harts online.

On the other hand, most of the time we do not want to analyze an algorithm

in suh detail. In the rare ases that we do need suh a preise analysis,

usually the additional tedious work of looking at every mahine instrution

by itself takes a long time, but is still almost negletable relative to the

work that the mathematial analysis requires. After all, without a very

preise mathematial analysis, ounting instrutions makes no sense.

Very often we do not have an implementation of an algorithm, nor do we

need one for a ruder analysis. In the ase of Quiksort and other sorting

algorithm you will see very often only the analysis of one variable: The

number of omparisons. Even this single number gives us a lot of insight.

If, for example, a omparison is very expensive, then C is the dominating

fator in the overall running time and we do not need the other variables.

In our ase|sorting numbers|this assumption does not hold.

1.6. CONCLUSION 17

If we ount the number of exeutions of every single instrution in Fig-

ure 1.3 and add them together, we get the total expeted number of exe-

uted mahine instrution as a funtion of N and M:

I = 37A+ 11B+ 5C+ C ′ + 8D+ 7E+ 15S+ 2S ′′ + 7N+ 14+ 2I ′

The ontribution of every variable to the running time is a onstant number

of mahine instrutions. That is not surprising sine the program length

itself is �xed and every instrution belongs to one (or sometimes more)

of the variables. Eah variable is a funtion of N. Only B and C grow

superlinear, so only they ontribute to the asymptoti running time and

will dominate the other terms for large N. In pratie, however, we annot

be onerned by only big N's. With our very preise analysis we an

estimate the running time very preisely for every N.

There is also a seond reason why purely asymptoti analysis are dangerous|

we usually do not learly know what for big N exatly means. It is the

essene of asymptoti analyses that this question has to remain unanswered.

Let us turn our attention to M. This is a parameter of the algorithm

and we an hoose M in suh a way that the running time beomes as

small as possible. It is lear that the optimal hoie of M also depends

on N, but we expet that this dependene will be notiable only for very

small N. If, however, N is very small, then Quiksort is not the right

hoie as a sorting algorithm and you should hoose, e.g., insertion sort

instead. Figure ?? shows the dependene of the running time of Quiksort

for N = 100 in dependene of M. You an see that the primitive hoie of

M = 1 is not good at all.

Exercises

1.1 Prove that the number of exeutions of blok r = j −1 is exatly A ′−S ′− �S ′
.

1.2 The relationship S ′ + S ′′ = �S ′ + �S ′′
annot be found by using ow relations.

Nevertheless it is a sound and useful equation that helps reduing the number of

independent variables. Prove that this equation indeed holds.

Hint: Consider the depth of the stak.

1.3 Complete the C-program from Figure 1.1 by adding maros push , pop, and

stak is empty . The �rst two maros are suppossed to push two integers onto or

pop them from a stak, while the third one should test whether the stak is empty

18 CHAPTER 1. ANALYSIS OF QUICKSORT

(and return 0 i� it is non-empty). Then add a main routine that alls quiksort

on inputs that onsist of the numbers 1, . . . ,N randomly permuted.

Introdue a new variable in the program that ounts the number of partitioning

phases. Choose a suitable value for M and establish by experiments the approxi-

mate value of A for di�erent values of N.

1.4 Let SN, N ≥ 1 be a solution to the reurrene relation SN =
∑N

k=1 Sk/k. All

solutions form a subvetor spae of RN
, the spae of real sequenes. What is the

dimension of this subvetor spae and how does a general solution look like?

1.5 Find a losed solution for

∑N
k=M+2

k(k−2)−(k−1)(k−3)
k(k+1)

by using maxima (or a

similar system) and by doing the summation by hand.

1.6 Analyse the remaining variable SN. First �nd an intuitive desription behind

SN. Then onstrut a reurrene relation for SN and solve it.

1.7 We have seen that I ′ + I ′′ = 1 and that I ′, I ′′ ∈ {0, 1}. We do not have to

analyze their behavior in greater detail beause the number of mahine instrution

that belong to I ′ and I ′′ is the same, so only their sum matters. If we use a highly

optimizing ompiler, however, it is possible that there is one mahine instrution

more in the I ′′-branh than in the I ′-branh. If we strive for ludirous preision

in our analyses we annot ignore this single instrution.

So please analyze the expeted value of I ′. What do think it will be? Did you

guess orretly?

1.8 Howmany mahine instrutions are exeuted on average in Figure mips-quik1

if the program is used to sort N pairwise distint keys in random order?

1.9 The assembler listing in Figure 1.3 ontains a branh instrution in the basi

blok starting at label $L3. The purpose of this exerise is to analyze the penalties

for wrong branh preditions on this instrution.

A ommonly used branh predition strategy is the following: The proessor has

two states for branh instrutions, whih we all YES and NO. In the state YES,

the proessor predits that the branh is taken and in the state NO that it is not

taken. The state is hanged when two predition in a row are wrong.

Analyze how often the branh predition is orret. Assume that the initial state

is YES. Do you expet that the predition is good or bad for this instrution?

Do a similar analysis for the instrution bne $12,$0,$L4 in the blok after la-

bel $L5.

1.10 Extend the C-program for Quiksort with instrution that ount A, B, C,

D, E, and S.

Run this program one for every Permutation of the numbers 1, . . . , 10 and �nd

out what A10, . . . , S10 are. Use M = 3.

Compare the ounted results with the preditions of our formul�.

1.11 Write a C-program for Mergesort and analyse in the same depth as we did

for Quiksort.

1.6. CONCLUSION 19

1.12 Consider the following algorithm to �nd a maximal key in an array on-

taining natural numbers. We assume all numbers are pairwise distint and every

permutation ours with uniform probability.

int maxElem(int a [], int N) {
int i ,max = −1;
for(i = 0; i < N ; i++)

if(a [i] > max)

max = a [i];
return max ;

}

How often are the instrutions a [i] > max and max = a [i] exeuted on average?

1.13 The next program is presented in x86 assembler language: Again the array

ds [0]. . . ds[2 ∗ N − 2] ontains N pairwise distine natural numbers. Eah per-

mutation ours with the same probability. How often is eah instrution of this

program exeuted on average?

maxElem: mov ax, 0xFFFF A ax← −1;

xor dx, dx A dx← 0;

next: cmp dx, N B i < N ?

jae done B jump if above or equal (i ≥ N)

mov bx, ds:[2*dx] C bx← a[dx]

cmp bx, max C bx > max ?

jna skip C jump if not above (bx ≤ N)

mov ax, bx D ax← bx

skip: add dx, 0x0002 E ax← ax+ 1;

jmp next E jump

done: push ax F push the maximum on the stak

1.14 Student party! DJ O*D*D is present and brought with him in�nitely many

songs in the three genres Rok, Gabba, and Blues. Tonight he will play n songs,

so there are theoretially 3n di�erent ombinations of genres possible. He has,

howver, to obey some strange rules:

1. After a rok song, he annot play Gabba beause readjusting the equalizer

takes too muh time.

2. You annot play two Gabba songs in sequene beause it auses visitors to

die of aelerated stupi�ation.

3. If he plays a Blues song, he has to stik to Blues for the remaining time

beause everybody is feeling blue.

Set up a reurrene for the number of genre ombination and solve it.

20 CHAPTER 1. ANALYSIS OF QUICKSORT

1.15 We have an array a of lengthN. It ontainsN numbers drawn independently

and uniformly at random from {1, . . . ,N}. How often is eah instrution of the

following program exeuted on average?

ount = 0;
i = 1;
while(i ≤ N)

if(a [i]%2 == 1)
ount++;

i++;
return ount ;

1.16 Let w ∈ {a, b}n a word that has been hosen uniformly at random. How

often is the body of thewhile-loop exeuted on average in the following algorithm?

The funtion is palindrome tests whether a word in a palindrome, i.e., the same

when read bakwards.

i = 2;
while(i ≤ n)

if(is palindrome(w [1], ...,w [i]))
return true ;

i++;
return false ;

1.17 Two natural numbers m 6= n are friendly, if the sum of all proper divisors

of m is n|and vie versa. A son and his father wrote these two programs that

ompute friendly numbers. What are the running times of both programs?

Son

#include 〈iostream〉
int e [150000];

int ehteil(int a) {
int n = 0;
for(int i = 1; i + i ≤ a ; i++)

if(a%i == 0) n += i ;

e [a] = n ;
return n ;

}

main() {

for(int i = 0; i < 150000; i++) {

int a = ehteil(i);

if(a ≥ i) continue;

if(e [a] == i) std :: out << i

<< " " << ehteil(i) << "n n";

}

}

Father

#include 〈stdio.h〉
#define N 1000000
int teilersumme [N];

int main() {
int i ;
for(i = 1; i < N ; i++) {
int p = i ;
while(p < N) {

teilersumme [p] += i ;
p += i ;

}

}

for(i = 1; i < N ; i++) {

int a = teilersumme [i] − i ;

if(a < i && i == teilersumme [a] − a)

printf ("%d %dn n", a , i);

}
return 0;

}

Chapter 2

The Kirchhoff laws

When we analysed quiksort, we learned several methods who to redue

the numbers of variables that have to be analysed. A general tehnique

to do so, whih we will develop formally now, uses Kirhho�'s laws from

Eletrial Engineering. We begin by looking at a direted graph whose

nodes are the instrutions of our program.

There is an edge between two nodes if and only if the seond instrution

follows diretly behind the �rst one. In the ase of a branh instrution

more than one edge will emerge from a node. It is also possible that there

is more than one edge that leads into a node beause this node ould be

the goal of several branh instrutions.

We also assume that there is a speial node whih we will all START and

another one whih is denoted by STOP. The program ow starts at the

START node and ends at the STOP node. Let us assume, the graph has

exatly n nodes inluding START and STOP and m edges. We denote the

edges by ei by i = 1, . . . ,m.

For symmetry reasons we add another edge alled e0 that goes from STOP

to START. With Ei we denote the number of times that ei is used in a

program run. We set E0 = 1 as if the program will return to its start after

terminating. All together we have m di�erent variables Ei. It will turn out

that there are not all independent of eah other but are subjet to several

equations. These equations are derived from Kirhho�'s law:

Theorem 1. (Kirchhoff’s Law)

Let I be the set of all i for whih the edge ei ends in some node X and let

21

22 CHAPTER 2. THE KIRCHHOFF LAWS

START

STOP

A

B

C D

E

e1

e2

e3 e4

e5 e6

e7

e8

e9

e0

START

STOP

A

B

C D

E

e1

e2

e3 e4

e5 e6

e7

e8

e9

e0

Figure 2.1: Example of a ow diagram with and without a spanning tree.

O be the set of all i for whih ei emerges from X. Then the sums

∑

i∈I
Ei =

∑

i∈O
Ei

are idential and the orresponding number expresses how often the stru-

tion X is exeuted all together.

In the following we will develop a method whih lets us hoose a subset of

the set of independent variables Ei suh that we an derive the value of all

other variables from them.

The �rst step is to hoose a spanning tree for the undireted graph. In

this step we ignore that edges are direted. Figure ?? ontains a simple

example and a spanning tree depited by drawing its edges thiker. The

spanning tree onsists of the edges e1, e2, e3, e4, e5, and e7.

If we add any other edge to this spanning tree, then we get a unique yle.

We denote these yles as fundamental yles. In our example the edges

e0, e6, and e8 reate suh fundamental yles. We provide eah edge of a

fundamental yle with a label: \+", if the diretion of this edge is the

same as the diretion of the unique edge in the yle whih does not belong

to the spanning tree. Otherwise, we use the label \−".

23

In our example we have the following fundamental yles:

C0 = e0 + e1 + e2 + e3 + e5 + e7

C6 = e6 − e5 − e3 + e4

C8 = e8 + e3 + e5

C9 = e9 + e2 + e3

An interesting fat whih is what makes this de�nition interesting for the

analysis of algorithm, is that every fundamental yle delivers a solution

of Kirhho�'s laws: We set all Ei = 0 for whih ei is not part of the

fundamental yle. If on the other hand ei belongs to the fundamental

yle, then we set Ei = 1 or Ei = −1, aording to the label of ei in the

fundamental yle.

In our example the four orresponding solutions look as follows:

1. E0 = 1, E1 = 1, E2 = 1, E3 = 1, E4 = 0, E5 = 1, E6 = 0, E7 = 1, E8 = 0,

E9 = 0

2. E0 = 0, E1 = 0, E2 = 0, E3 = −1, E4 = 1, E5 = −1, E6 = 1, E7 = 0,

E8 = 0, E9 = 0

3. E0 = 0, E1 = 0, E2 = 0, E3 = 1, E4 = 0, E5 = 1, E6 = 0, E7 = 0, E8 = 1,

E9 = 0

4. E0 = 0, E1 = 0, E2 = 1, E3 = 1, E4 = 0, E5 = 0, E6 = 0, E7 = 0, E8 = 0,

E9 = 1

So far we have four di�erent solutions. The underlying equations are linear.

Therefore, linear ombinations of their solutions are again solutions. Using

vetor notation we an write the linear ombinations of our four solutions

as follows:

24 CHAPTER 2. THE KIRCHHOFF LAWS

~E =

E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

= λ1

1

1

1

1

0

1

0

1

0

0

+ λ2

0

0

0

−1

1

−1

1

0

0

0

+ λ3

0

0

0

1

0

1

0

0

1

0

+ λ4

0

0

1

1

0

0

0

0

0

1

=

=

1 0 0 0

1 0 0 0

1 0 0 1

1 −1 1 1

0 1 0 0

1 −1 1 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

λ1

λ2

λ3

λ4

(2.1)

For every ombination of λ1, λ2, λ3, λ4 ∈ R we get one solution of Kirhho�'s

laws and every solution an be derived in this way.

At this point we an also notie that E0 = E1 = E7 and E4 = E6, beause

the rows of the matrix are idential for them.

At this point it is easy to hoose three linearly independent Ei and analyse

only them. Then all other Ei an be expressed by them. In our example

we hoose E0 beause we already know that E0 = 1. We have to hoose

three more. Let us assume, we hoose A = E2, C = E3 and D = E4. For

this hoie we get the following equation:

1

A

C

D

=

1 0 0 0

1 0 0 1

1 −1 1 1

0 1 0 0

λ1

λ2

λ3

λ4

25

This is a linear system of equations that an be solved with the usual

methods. Here we get the result λ1 = 1, λ2 = D, λ3 = −A + C + D, and

λ4 = A− 1. If we insert these in (2.1) then we get the solution of all other

Ei:

~E =

E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

=

1 0 0 0

1 0 0 0

1 0 0 1

1 −1 1 1

0 1 0 0

1 −1 1 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

D

C+D−A

A− 1

=

1

1

A

C

D

1+ C−A

D

1

C+D−A

A− 1

All these omputations an be done by omputer algebra systems like Math-

ematia, Maple or Masyma. In general the matrizes an beome quite big.

We hose A, C, and D as the variables that we wanted to analyse. Whih of

the variables are hosen for this purpose depends on the onrete problem.

It remains to get C and E: In this ase we an express them as B = E3+E4 =

C+D and E = E5 + E6 = 1+ C+D−A.

You an �nd a deeper exposition to this tehnique Knuth [?, Setion

2.3.4.1℄.

Exercises

2.1 If a ow diagram onsists of n nodes and m edges, how many fundamental

yles do we get?

2.2 Prove or disprove: In every ow diagram you an �nd a spanning tree suh

that all fundamental yles ontain only edges that are labeled with plus.

2.3 In dieser Aufgabe betrahten wir den Algorithmus von Prim, mit dessen

Let us look at the algorithms of Prim that is used to ompute minimal span-

ning trees in a onneted weighted Graph.The input onsists of an undireted

graph G = (V, E), and a weight funtion w : E → R, and a starting node r.

26 CHAPTER 2. THE KIRCHHOFF LAWS

1 for eah u ∈ V do

2 key[u]←∞
3 π[u]← NIL

4 key[r]← 0

5 M← V

6 while (M 6= ∅) do
7 u← min-from(M)

8 for eah v ∈ neighbors(u) do

9 if (v ∈ M)∧ (w(u, v) < key[v]) then

10 π[v]← u

11 key[v]← w(u, v)

Draw a ow diagram for this algorithms that ontains all bloks. Construt a

spanning tree and a orresponding fundamental yles. Choose a minimal set of

blogs whose running time an be analysed, and explain how you an derive all

other variables from them.

Chapter 3

Recurrence relations

If you analyse the running time or some other parameter of an algorithm,

you want to �nd a losed mathematial formula that desribes the param-

eter you are analysing. More often than not you will not be able to �nd

suh a formula right away, but only some related formula that desribes

the parameter you are insterested in in an indiret way. When we analysed

quiksort as an example we ould desribe an interesting parameter XN by

formulas that looked like

XN =
2

N

N−1∑

k=0

Xk + fN.

An equation that ontains not only the variables XN but also variables Xk

with k < N are alled reurrenes.

To solve a reurrene relation means to �nd a losed formula for XN.

In general no losed formula for the solution of a reurrene relation needs

to exist|in pratie, on the other hand, the analysis of algorithms very

often leads to reurrene relations that indeed have a losed solution, or,

whose solution an be at least very well approximated by some nie losed

formula. There are also some lasses of reurrene relations that an be

solved by some easy �xed algorithm. Muh of the material in this hapter

an be found in three books [?, ?, ?℄, in partiular in the seond one by

Greene and Knuth.

27

28 CHAPTER 3. RECURRENCE RELATIONS

3.1 Classification of recurrence relations

The most general reurrene relation, whih we onsider, has the general

form

an = f(an−1, an−2, . . . , a0) for n ≥ t. (3.1)

We onsider an only for n ≥ 0 and de�ne a−1 = a−2 = a−3 = · · · = 0.

Beause (3.1) holds only for n ≥ t, we an ompute any an if a0, a1, . . . , at−1

are already known. In general the solution of the reurrene relations will

depend on these starting values. If the reurrene relation originates from

the analysis of an algorithm, then the starting values a0, a1, . . . , at−1 are

usually �xed by the algorithm.

The reurrene relation for the number of omparisons during partitioning

for the Quiksort algorithm was

CN = N+ 1+
2

N

N−1∑

k=0

Ck for N > M

with the starting onditions C0 = C1 = C2 = . . . = CM = 0.

We an derive these starting onditions easily from the algorithm: IfN ≤ M

then no partitioning takes plae.

In general we lassify reurrene relations as follows:

an = f(an−1, an−2, . . . , an−t) Reurrene relation of t-th order

an =

n−1∑

k=0

x(k, n)ak homogeneous, linear reurrene relation

an =

n−1∑

k=0

x(k, n)ak + f(n) linear reurrene relation

an = x1an−1 + x2an−2 + · · ·+ xtan−t linear with onstant oeÆients

In this hapter we will look at various methods to solve typial reurrene

relations that originate from the analysis of algorithms.

3.2. CREATING A TABLE 29

3.2 Creating a table

Usually a �rst step that we should always take is to ompute some values

of the solution of the reurrene relation and put them into a small table.

Let us look for example at the reurrene relation

an = an−1 + 2an−2 for n > 1 and a0 = a1 = 1.

We an ompute a2 = a1 + 2a0 = 3, a3 = a2 + 2a1 = 5, a4 = a3 + 2a2 = 11,

a5 = 21, a6 = 43. and get the following table:

n 0 1 2 3 4 5 6

an 1 1 3 5 11 21 43

By looking at the table we get a �rst impression how the solution looks

like and we an reuse the table later to see whether our losed formula is

orret. If the �rst values of the table oinide with the values predited

from our solution we an be reassured that we have not made any mistakes

when �nding the losed formula.

3.3 Guessing a solution and

proving it by induction

With the help of some solutions from our short table we an try to guess

a losed formula. Let us look for example at the table above for an. If we

look at it it seems that the sequene onsists of numbers that almost double

in eah step. It seems that there are not exatly doubling, but sometimes

they are twie the predeessor plus one and sometimes minus one. If this

is true, a good idea might be to look at the sum of two onsequent values

of an. We get 2, 4, 8, 16, 32, 64.

This suggests that the solution should be approximately 2n+1/3. So let us

look at a table of 2n+1/3:

n 0 1 2 3 4 5 6
1
3
2n+1 2

3
1 1
3

2 2
3

5 1
3

10 2
3

21 1
3

42 2
3

30 CHAPTER 3. RECURRENCE RELATIONS

Indeed it seems that the values in this table are almost the solution but

they are alternatingly

1
3
too small or too big. This suggest a losed formula

as follows:

an =
1

3
2n+1 +

1

3
(−1)n

Let us verify this formula on some values. If n = 0 we get 1
3
2+ 1

3
(−1)0 = 1,

for n = 1 we get 1
3
4+ 1

3
(−1)1 = 1, and �nally for n = 5 we get 1

3
64+ 1

3
(−1)5 =

63
3
= 21.

It seems that our guess was orret but we still have to prove its orretness.

Usually indution is the best method to prove suh a laim. We already

showed that the losed formula is orret for n = 0 and n = 1. So let us

assume now that n > 1.

From the indution hypothesis we get

an = an−1 + 2an−2 =
1

3
2n +

1

3
(−1)n−1 +

2

3
2n−1 +

2

3
(−1)n−2

=
1

3
2n+1 +

1

3
(−1)n−2

and this oinides with our losed formula for an beause (−1)n−2 = (−1)n.

This proves without doubt that indeed an = 1
3
2n+1 + 1

3
(−1)n.

3.4 Looking up the solution

There is a very interesting book that ontains most known integer sequenes

in lexiographial order. Of ourse, only the beginning of eah sequene is

listed together with a short desription and pointers to plaes this series

was used. You an �nd our series 1, 1, 3, 5, 11, 21, 43, . . . in this book. There

it has the name \A(N) = A(N − 1) + 2A(N − 2)" and there are pointers

to two papers in the journal Eureka, the Journal of the Arhimedeans

(Cambridge University Mathematial Soiety) and Nouvelles Correspon-

dane Math�ematique. You an �nd more about this series in those two

publiations.

Meanwhile in the mordern world of the WWW there is an alternative that

you an �nd under the URL

https://oeis.org

3.5. MATHEMATICA, MAPLE, MAXIMA, ETC. 31

At this webpage you an enter the beginning of your series and the answer

to the input 1, 1, 3, 5, 11, 21, 43 is depited in Figure 3.1. The web page also

reveals a name of our series: Jaobstahl sequene. Moreover you �nd more

pointers to literature and also a losed formula for the term an.

3.5 Mathematica, Maple, Maxima, etc.

There are some omputer algebra systems that are able to solve simple re-

urrene relations diretly. For the system Mathematia the orresponding

funtion is named RSolve. We an use Mathematia to solve our example

problem:

Mathematia �nds the same solution as we did. The other well-known

algebra system Maple an solve the reurrene, too:

> rsolve({a(n) = a(n-1)+2*a(n-2), a(0..1)=1}, a(n));

n n

1/3 (-1) + 2/3 2

>

The free omputer algebra system maxima is also able to solve suh a

simple reurrene:

Maxima 5.23.2 http://maxima.sourceforge.net

using Lisp SBCL 1.0.38-3.el6

Distributed under the GNU Public License. See the file COPYING.

Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.

32 CHAPTER 3. RECURRENCE RELATIONS

login

This site is supported by donations to The OEIS Foundation.

Annual appeal: Please make
a donation to keep the OEIS
running! Over 6000 articles
have referenced us, often
saying "we discovered this
result with the help of the

OEIS".

Other
ways

to
donate

Hints

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A001045 Jacobsthal sequence (or Jacobsthal numbers): a(n) = a(n-1) + 2*a(n-2), with
a(0) = 0, a(1) = 1.
(Formerly M2482 N0983)

575

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381,
174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485,

178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061 (list; table; graph; refs; listen;

history; text; internal format)

OFFSET 0,4

COMMENTS Number of ways to tile a 3 X (n-1) rectangle with 1 X 1 and 2 X 2 square tiles.
Also, number of ways to tile a 2 X (n-1) rectangle with 1 X 2 dominoes and 2 X 2

squares. - Toby Gottfried, Nov 02 2008
Also a(n) counts each of the following four things: n-ary quasigroups of order 3

with automorphism group of order 3, n-ary quasigroups of order 3 with
automorphism group of order 6, (n-1)-ary quasigroups of order 3 with
automorphism group of order 2 and (n-2)-ary quasigroups of order 3. See the
McKay-Wanless (2008) paper. - Ian Wanless, Apr 28 2008

Also the number of ways to tie a necktie using n + 2 turns. So three turns make an
"oriental", four make a "four in hand" and for 5 turns there are 3 methods:
"Kelvin", "Nicky" and "Pratt". The formula also arises from a special random
walk on a triangular grid with side conditions (see Fink and Mao, 1999). -
arne.ring(AT)epost.de, Mar 18 2001

Also the number of compositions of n + 1 ending with an odd part (a(2) = 3 because
3, 21, 111 are the only compositions of 3 ending with an odd part). Also the
number of compositions of n + 2 ending with an even part (a(2) = 3 because 4,
22, 112 are the only compositions of 4 ending with an even part). - Emeric
Deutsch, May 08 2001

Arises in study of sorting by merge insertions and in analysis of a method for
computing GCDs - see Knuth reference.

Number of perfect matchings of a 2 X n grid upon replacing unit squares with
tetrahedra (C_4 to K_4):

o----o----o----o...
| \/ | \/ | \/ |
| /\ | /\ | /\ |
o----o----o----o... - Roberto E. Martinez II, Jan 07 2002
Also the numerators of the reduced fractions in the alternating sum 1/2 - 1/4 + 1/8

- 1/16 + 1/32 - 1/64 + ... - Joshua Zucker, Feb 07 2002
Also, if A(n), B(n), C(n) are the angles of the n-orthic triangle of ABC then A(1)

= Pi - 2A, A(n) = s(n)*Pi + (-2)^n*A where s(n) = (-1)^(n-1) * a(n) [1-orthic
triangle = the orthic triangle of ABC, n-orthic triangle = the orthic triangle
of the (n-1)-orthic triangle]. - Antreas P. Hatzipolakis
(xpolakis(AT)otenet.gr), Jun 05 2002

Also the number of words of length n+1 in the two letters s and t that reduce to
the identity 1 by using the relations sss = 1, tt = 1 and stst = 1. The
generators s and t and the three stated relations generate the group S3. - John

A001045 - OEIS https://oeis.org/A001045

1 of 10 11/20/2017 10:15 AM

Figure 3.1: Erste Seite der Antwort der On-Line Enylopedia of Integer

Sequenes auf die Eingabe 1,1,3,5,11,21,43.

3.6. HIDDEN PRODUCTS AND SUMS 33

(%i1) load("solve_rec");

(%o1) /usr/share/maxima/5.23.2/share/contrib/solve_rec/solve_rec.mac

(%i2) solve_rec(a[n]-a[n-1]-2*a[n-2], a[n], a[0]=1, a[1]=1);

n + 1 n

2 (- 1)

(%o2) a = ------ + ------

n 3 3

3.6 Hidden products and sums

The most simple reurrene relations are of the form

an = xnan−1 and bn = bn−1 + yn.

Both forms are related to eah other. If you substitute �an = log(an) then

the left reurrene relation turns into a reurrene relation of the right hand

type. We will all these two types of reurrene relations hidden produts

and hidden sums.

The reurrene relation on the left hand side an be solved by repeatedly

inserting the right hand side. The proedure leads to a produt:

an = xnan−1 = xnxn−1an−2 = · · · = xnxn−1xn−2xn−3 · · · x2x1a0 = a0

n∏

k=1

xk.

In the same way iteratively inserting leads to a sum for the reurrene

relation on the right hand side.

Theorem 2. The solutions of the reurrene relations

an = xnan−1 and bn = bn−1 + yn

are

an = a0

n∏

k=1

xk and bn = b0 +

n∑

k=1

yk.

34 CHAPTER 3. RECURRENCE RELATIONS

3.7 Linear recurrence relations with constant

coefficients

A very simple reurrene form are homogeneous linear reurrene relations

with onstant oeÆients. In the most general form they look like

an = c1an−1 + c2an−2 + · · · + ctan−t for n ≥ t (3.2)

Here we have a reurrene relation of t-th order. The oeÆients ci ∈ R

are the oeÆients of the reurrene relations and do not depend on n

(therefore onstant oeÆients.)

Linear reurrene relations with onstant oeÆients an always be solved

and additionally they an be solved with a �xed algorithm. In the fol-

lowing we will develop suh a general algorithm that solves these kind of

reurrenes.

Let us �rst assume that there exists a solution of the form an = αn
where

α ∈ C. If we insert this solution into the reurrene and set n = t then we

get

αt = c1α
t−1 + c2α

t−2 + · · · + ct−1α+ ct.

Suh a solution implies that α is a root harateristi polynomial.

χ(z) = zt − c1z
t−1 − c2z

t−2 − · · · − ct−1z− ct.

On the other hand it is also lear that an = αn
is indeed a solution to (3.2)

if α is a root of the harateristi polynomial.

If α happens to be a root of χ with multipliity k then additionally an =

njαn
for 0 ≤ j < k are solutions to the reurrene relations. We an hek

this fat by inserting the solution into the reurrene:

njαn =

t∑

r=1

cr(n− r)jαn−r,

whih is equivalent to

njαt −

t∑

r=1

cr(n− r)jαt−r = 0.

The left hand side of the above equation is a linear ombination of χ(α),

χ ′(α), χ ′′(α), . . . , χ(j)(α). The �rst k derivatives of χ are 0 at α beause α

is a root of χ with multipliity k.

3.8. SUMMATION FACTOR 35

Theorem 3. The homogeneous linear reurrene relation with onstant

oeÆients

an = c1an−1 + c2an−2 + · · · + ctan−t for n ≥ t

has the solutions an = njαn
for all roots α of the harateristi polynomial

χ(z) = zt − c1z
t−1 − c2z

t−2 − · · · − ct−1z− ct,

and for all j = 0, 1, . . . , k − 1 where k is the multipliity of the root α. All

these solutions are linearly independent. They form a basis of the vetor

spae of all solutions.

Beause the reurrene relation is linear and homogeneous multitudes of

a solution and sums of solutions are again solutions of the reurrene. In

that way we have onstruted exatly t linearly independent solutions and

we noted that they are a basis of the vetor spae of all solutions.

If we have t initial onditions, for example the values of a0, a1,. . . , at−1,

then we get exatly one solution by a linear ombination of the solutions

in our basis. To �nd the right linear ombination we just have to solve a

linear system of equations.

Let us look at

an = an−1 + 2an−2 f�ur n > 1 und a0 = a1 = 1.

The harateristi polynomial is q(z) = z2− z− 2. We an see immediately

that −1 is a root. Using polynomial division of q(z) by z + 1 we get the

result z− 2 and a seond root is 2. All solutions are therefore of the form

an = λ2n + µ(−1)n.

To establish the values of the onstants λ and µ we have to use the initial

onditions. If we insert the initial onditions into the reurrene relation

we get 1 = λ + µ and 1 = 2λ − µ. Solving this system of equations yields

λ = 1
3
and µ = 2

3
.

3.8 Summation factor

We an always onvert a linear reurrene relation of �rst order into a sum.

We used this tehnique already when solving the reurrene relations for

36 CHAPTER 3. RECURRENCE RELATIONS

Quiksort. After we turned them into a �rst order reurrene relation they

took the following form:

NXN = (N+ 1)XN−1 +NfN − (N− 1)fN−1, for N > M+ 1

We multiplied this equation with 1/N(N + 1) and �nally got after a sub-

stitution the very simple equation of the form

YN = YN−1 + gN.

In the following we will develop a tehnique that allows us to do a similar

transformation with all linear reurrene relations of �rst order.

Theorem 4. The linear reurrene relation of �rst order

an = xnan−1 + yn for n > 0

and a0 = 0 has the solution

an = yn +

n−1∑

j=1

yjxj+1xj+2 . . . xn.

We prove this theorem by dividing the reurrene relation by xnxn−1xn−2 . . . x1,

whih gives us

an

xnxn−1xn−2 . . . x1
=

an−1

xn−1xn−2xn−3 . . . x1
+

yn

xnxn−1xn−2 . . . x1
.

If we substitute bn = an/(xnxn−1xn−2 . . . x1) we get the simpler reurrene

relation

bn = bn−1 +
yn

xnxn−1xn−2 . . . x1

that we an easily solve by a summation. In this method we all the

produt 1/xnxn−1xn−2 . . . x1 a summation fator. It gives this method its

name. Very often the summation fator is quite simple beause a lot of

anellation goes on.

Let us try to apply the tehnique of summation fators on the reurene

relation

an = 2an−1 + n for n > 0

3.9. THE REPERTOIRE METHOD 37

and a0 = 0. In this ase xn = 2 and yn = n. Therefore the solution is

an = n+

n−1∑

j=1

j · 2n−j = 2n+1 − 2− n.

Indeed Mathematia an solve this reurrene relation, too:

In[4]:= RSolve[{a[0]==0, a[n]==2a[n-1]+n}, a[n], n]

1 + n

Out[4]= {{a[n] -> -2 + 2 - n}}

3.9 The Repertoire Method

We an use the repertoire method mainly for linear reurrene relations.

This method shows that solving reurrene relations is more art than si-

ene. To master the repertoire method we need a lot of intuition. When

analysing algorithms, usually we know how the solution will roughly look

like. In general when applying the repertoire method we start from a re-

urrene relation of the form

an = x1,nan−1 + x2,nan−2 + x3,nan−3 + . . .+ xt,nan−t + fn.

At this point we imagine some solution of the equation and �nd out for

whih fn we get this solution. We do the same for many di�erent potential

solutions and eah time we get a di�erent fn. Beause linear ombinations

of solutions are again solutions of a reurrene relation we an get the

solution of the original reurrene relation by forming a linear ombination

of our potential solutions suh that the orresponding linear ombination

of the di�erent fn's yields the original fn of the orginial reurrene relation.

We demonstrate the repertoire method on Quiksort (with M = 0):

an = fn +
2

n

n−1∑

k=0

ak

We start with a potential solution an = 1 and get

fn = an −
2

n

n−1∑

k=0

ak = 1−
2

n

n−1∑

k=0

1 = −1.

38 CHAPTER 3. RECURRENCE RELATIONS

This means that our guessed solution an = 1 is indeed orret if fn = −1.

But the real fn is di�erent. We proeed by trying other potential solutions,

omputing the orresponding fn and see what linear ombinations of these

fn's we an get.

For our Quiksort equation we will hoose the following repertoire:

an fn = an −
2

n

n−1∑

k=0

ak a0

1 −1 1

Hn 2−Hn 0

nHn
1
2
(n− 1) +Hn 0

Let us assume we want to analyse the number of omparisons. In that ase

fn = n+ 1. Not suprisingly we don't have a solution for this spei� fn in

our repertoire. On the other hand, we an get n+ 1 as a linear ombation

of the three fn's whih are ontained in our repertoire:

n+ 1 = 2

(

1

2
(n− 1) +Hn

)

+ 2 (2−Hn) + 2 (−1)

Consequently, we an get a solution for the reurrene relation with fn =

n+ 1 as

an = 2 (nHn) + 2 (Hn) + 2 (1) = 2(n+ 1)Hn + 2.

While we have a solution now, unfortunately, the starting ondition a0 = 0

is not ful�lled. Instead we get a0 = 2. To remedy this situation we need

a bigger repertoire so that the linear ombinations do not yield only the

orret fn but also the orret starting ondition. For this end we add

another funtion to our repertoire:

an fn = an −
2

n

n−1∑

k=0

ak a0

1 −1 1

Hn 2−Hn 0

nHn
1
2
(n− 1) +Hn 0

n 1 0

Now we an express n+ 1 as a linear ombination of 2−Hn,
1
2
(n− 1) +Hn

and 1 and get a solution with the orret starting ondition beause in all

3.9. THE REPERTOIRE METHOD 39

these ases a0 = 0 holds:

n+ 1 = 2

(

1

2
(n− 1) +Hn

)

+ 2 (2−Hn) − 2 (1)

and the solution is

2(nHn) + 2(Hn) − 2(n) = 2nHn + 2Hn − 2n.

The general proedure when using the repertoire method is as follows: we

start with a reurrene relation of the form

an =

t∑

i=1

xi,nan−i + f(n).

The oeÆients xi,n may depend on n.

Step 1: We hoose a repertoire bn, cn, dn,. . . of di�erent series and ompute

for eah of them fb(n) = bn −
∑t

i=1 xi,nbn−i. In this way bn is a losed

solution of the reurrene relation

bn =

t∑

i=1

xi,nbn−1 + fb(n) for n ≥ t

Step 2: If we an express f(n) as a linear ombination of fb(n), fc(n),. . . ,

let us say as

f(n) = βfb(n) + γfc(n) + δfd(n) + · · ·

then we get

an = βbn + γcn + δdn + · · ·

and he have a solution of the reurrene relation with some spei� starting

onditions.

Step 3: If we want to �nd a solution for an for di�erent starting onditions,

whih is usually the ase, then we have to use a di�erent linear ombination.

For this end the repertoire must be big enough in order to have as many

linearly independent solutions for an suh that we an enfore the orret

starting onditions by some linear ombination of the solutions.

40 CHAPTER 3. RECURRENCE RELATIONS

3.10 Order Reduction

Sometimes we an redue a reurrene relation of higher order to several

reurrene relations of smaller order. For this end we de�ne the so-alled

shift operator E, whih maps sequenes to sequenes. This operator is

de�ned via

Efn = fn+1,

whih means that this operator shifts all elements in a sequene by one

position to the beginning. We an interpret the expression Efn in two

di�erent ways: If we interpret fn as a sequene, then Efn = fn+1 is simply

the shifted sequene. A seond possibility is to interpret fn as an operator,

too, whih gives us fngn if applied to the sequene gn. Then Efn = fn+1E.

To work with linear operators an be ounterintuitive in the beginning.

While the assoiative law is still valid (for example E(fngn) = (Efn)gn),

whih means that we don't have to are about the setting of parenthesis,

the ommutative law ertainly is invalid. For example En = (n + 1)E (n

is interpreted here as a series whose n's element is n). Similarly En2 =

(n2 + 2n+ 1)E.

It is always possible to write a linear reurrene relation of t's order as

follows:

p(E)an = f(n),

where p is a polynomial of degree t whose oeÆients are themselves se-

quenes beause

an = x1,nan−1 + x2,nan−2 + · · · + xt,nan−t + f(n),

whih is equivalent to

(Et − x1,nE
t−1 − x2,nE

t−2 − x3,nE
t−3 − · · · − xt,nE

0)an−t = f(n).

While it is always possible to fator polynomials whose oeÆients are

omplex numbers, for polynomials whose oeÆients are sequenes, this

is not always the ase. If we are luky, however, we an write p(E) =

q(E)r(E). In that way, it is sometimes possible to fator a polynomial

p(E). If we indeed sueed in fatoring the polynomial, we still have to

solve q(E)r(E)an = f(n). We start with the substitution bn = r(E)an and

�rst solve the reurrene relation

q(E)bn = f(n),

3.10. ORDER REDUCTION 41

whih is a reurrene relation of lower order than the original one. In that

way, we an get a losed formular for bn. In the next step we solve the

reurrene

r(E)an = bn,

whih is again a reurrene relation of lower order and after solving it we

get the solution for an.

In general we use the following reipe:

First you write a linear reurrene relation in operator form as

p(E)an = f(n)

and try to fator it as p(E) = q(E)r(E). In the next step you solve

q(E)bn = f(n) and r(E)an = bn.

The reurrene relation is in that way redued to two reurrene relations

of smaller order.

As an example, let us again look at the reurrene relation

an+2 − (n+ 2)an+1 + nan = n. (3.3)

In operator notation this reurrene relation looks as follows:

(E2 − (n+ 2)E+ n)an = n

We an indeed fator this polynomial beause (E − 1)(E − n) = E2 − (n +

2)E+n. Please note that En = (n+ 1)E. The reurrene relation has now

the form

(E − 1)(E− n)an = n

and we start by solving (E − 1)bn = n or, equivalently bn+1 = bn + n.

This is a hidden sum and we get the solution with the help of Theorem 2

resulting in

bn =

k∑

k=0

(n− 1) + b0 =
n(n− 1)

2
+ b0 =

n(n− 1)

2
+ a1.

In the �nal step we have to solve (E−n)an = bn = n(n− 1)/2+a1, whih

is a reurrene relation that an also be written as

an+1 = nan +
n(n − 1)

2
+ a1. (3.4)

42 CHAPTER 3. RECURRENCE RELATIONS

This is a linear reurrene of �rst order. Solving it yields

an =
(n− 1)!

2

(

n−1∑

k=1

k2 − k+ 2a1

k!

)

+ a1(n− 1)!. (3.5)

As usual the result is in the form of a summation. Let us take a loser look

at the interesting part inside the big parentheses:

n−1∑

k=1

k(k− 1) + 2a1

k!
=

n−1∑

k=2

1

(k− 2)!
+

n−1∑

k=1

2a1

k!
=

n−3∑

k=0

1

k!
+ 2a1

n−1∑

k=1

1

k!

=

n−3∑

k=0

1

k!
+ 2a1

(

n−1∑

k=0

1

k!
− 1
)

= e−

∞∑

k=n−2

1

k!
+ 2a1

(

e−

∞∑

k=n

1

k!
− 1
)

= e−O(1/(n−2)!)+2a1(e−O(1/n!)−1) = 2a1(e−1)+e+O(1/(n−2)!)

Inserting the result into (3.5) gives us an asymptoti estimate of an:

an =
(n− 1)!

2

(

2a1(e− 1) + e+O(1/(n− 2)!)

)

+ a1(n − 1)!

= (n− 1)!(a1e+ e/2) +O(n)

Let us hoose a1 as the starting ondition. Then a10 = 1479610 and the

estimate is 1479615.164 . . ., whih is about 5 too high, but still very lose.

3.11 Extracting recurrence relations from al-

gorithms

Let us look at the following while-loop:

while i ≤ j do

i← i+ 1; j← j− i

od

We an ask the question: How often will the body of this loop be exeuted?

Obviously, the answer to this question depends on the values the variables

i and j ontain at the beginning. Let us all these values i0, j0 and fur-

thermore, denote by in, jn the values of the variables i and j after the n's

iteration of the loop.

3.11. EXTRACTING RECURRENCE RELATIONS FROMALGORITHMS43

Let us start by onstruting a small table for a small example. For this

purpose, let us hoose i0 = −3 and j0 = 10.

n 0 1 2 3 4 5 6 7

in −3 −2 −1 0 1 2 3 4

jn 10 12 13 13 12 10 7 3

Beause i7 > j7, the loop will not be exeuted for the 8th time.

It is now easy to write down a reurrene relation for in and jn:

in = in−1 + 1 and jn = jn−1 − in−1 − 1

These two reurrene relations are interleaved but only the seond with

the �rst. We an solve the reurrene relation for in immediately and the

result is simply in = i0 + n. This losed form an be inserted into the

seond reurrene relation

jn = jn−1 − (i0 + n− 1) − 1 = jn−1 − i0 − n.

Again, this is a hidden sum and the solution is

jn = j0 −

n∑

k=1

(i0 + k) = j0 − ni0 −
n(n + 1)

2
.

The body of the loop is exeuted as long as i ≤ j holds. The (n + 1)st

exeution takes plae if and only if the nth exeution took plae and ad-

ditionally jn − in ≥ 0. If i0 > j0, then the loop will not be exeuted at

all.

Let us take a loser look at the ondition jn − in ≥ 0:

jn − in = −
n(n + 1)

2
−ni0 + j0 − i0 −n = −

1

2
n2 −

1

2
(3+ 2i0)n+ j0 − i0 ≥ 0

If we multiply this inequality by −2, we get the following one, whih looks

a little bit nier:

n2 + (3+ 2i0)n− 2(j0 − i0) ≤ 0. (3.6)

The equation x2 + (3+ 2i0)x− 2(j0 − i0) = y desribes a parabola. We an

assume that n = 0 is a solution of (3.6) beause otherwise the loop is not

44 CHAPTER 3. RECURRENCE RELATIONS

exeuted at all. Beause of this, the parabola will have real roots. The

inequality (3.6) will be ful�lled for all ns starting from 0 up to the right

root. This seond root is

ζ = −i0 −
3

2
+

1

2

√

4i0(i0 + 1) + 8j0 + 9.

With other words (3.6) holds for 0 ≤ n ≤ ζ, whih is equivalent to 0 ≤
n ≤ ⌊ζ⌋. All together the body of the loop will be exeuted ⌊ζ⌋+ 1 times.

Expliitly written this number is

⌊

1

2

√

4i0(i0 + 1) + 8j0 + 9− i0 −
1

2

⌋

. (3.7)

At this point, it might be a good idea to test this expliit formula for the

number of exeutions on an example. Let us assume again that i0 = −3

und j0 = 10. If we plug in these values into (3.7) we get

⌊1

2

√

4(−3)(−2) + 8 · 10+ 9+ 3−
1

2

⌋

=
⌊1

2

√
117+

5

2

⌋

= ⌊7.91⌋ = 7.

This result is orret.

Let us try a more ompliated problem:

for k = 1 to m

i← k; j← k2;

while i ≤ j do

i← i+ 1; j← j− i

od

od

How often is the body of the inner loop exeuted?

We denote by W(i0, j0) the number of exeutions of the body of the while

loop if at its beginning the variables have the values i = i0 and j = j0.

Above we already established a losed formula for W(i0, j0): W(i0, j0) =

⌊ 1
2

√

4i0(i0 + 1) + 8j0 + 9− i0 −
1
2
⌋.

3.12. SEARCHING AN UNORDERED ARRAY 45

n∑

k=1

⌊
√
k⌋ =

n∑

k=1

⌊
√
k⌋∑

i=1

1 =
∑

k

∑

i

(1 ≤ k ≤ n∧ 1 ≤ i ≤ ⌊
√
k⌋) =

=
∑

k

∑

i

(1 ≤ k ≤ n∧ 1 ≤ i2 ≤ k) =
∑

n

∑

i

(1 ≤ i2 ≤ k ≤ n) =

=

⌊√n⌋∑

i=1

n∑

k=i2

1 =

⌊√n⌋∑

i=1

(n− i2 + 1) = ⌊
√
n⌋(n+ 1) −

i(i+ 1
2
)(i + 1)

3

∣

∣

∣

∣

⌊√n⌋

i=0

=

= ⌊
√
n⌋(n+ 1) −

⌊√n⌋(⌊√n⌋+ 1
2
)(⌊√n⌋+ 1)

3

Figure 3.2: How to ompute the sum of ⌊
√
k⌋.

The total number is simply

m∑

k=1

W(k, k2) =

m∑

k=1

⌊

1

2

√

4k(k+ 1) + 8k2 + 9− k−
1

2

⌋

=

m∑

k=1

⌊

1

2

√

12k2

(

1+
1

3k
+

4

4k2

)

− k−
1

2

⌋

=

m∑

k=1

⌊√
3 · k

(

1+
1

6k
+O

(

1

k2

))

− k−
1

2

⌋

=

m∑

k=1

⌊

k(
√
3− 1) +

√
3

6
−

1

2
+O(k−1)

⌋

=

m∑

k=1

(

k(
√
3− 1) +O(1)

)

=

√
3− 1

2
m2 +O(m) ≈ 0.366 ·m2

(3.8)

Instead of establishing an exat formula for this summation, we just om-

pute an estimate. For this end we use Taylor's theorem:

√
1+ x = 1+

1

2
x+O(x2)

If we use the value m = 1000 in our approximatively orret formula, we

get 366025. The exat value is 365687.

3.12 Searching an unordered array

We start with an example. Let us assume we have an array a[1] . . . a[n]

with pairwise distint numbers. We want to write a program that �nds out

46 CHAPTER 3. RECURRENCE RELATIONS

whether a given number is ontained in the array. An obvious solution in

the programming language C might look as follows:

int n ;
int a [1000000];

int searh1 (int v)

{
int i ;
for(i = 1; i ≤ n ; i++)

if(a [i] == v) return 1;
return 0;

}

What is the running time of this program?

It is quite obvious that in this ase the answer depends on various fators.

One of them is whether v is ontained in the array or not.

Let us �rst onsider an unsuessful searh: The for-loop will be exeuted

n times and after that 0 is returned.

In the ase of a suessful searh, on the other hand, there is some i with

a[i] = v. To be able to analyse this ase, we need to know something about

whih i happens to have this property. In general, we an try to make a

statistial assumption about the input. In the following we will assume that

all elements in the array are in a random order. Then for eah i between 1

and n the probability that ai = v is exatly 1/n.

Let us denote the running time of the program by L(i), if a[i] = v. The

average running time is then

1

n

n∑

i=1

L(i).

All that is left is to �nd a losed formula for L(i). The for-loop and the

if-statement are exeuted exatly i times. If L(i) is the number of mahine

instrutions, we need to look at the mahine programe (Figure 3.3). Let Z

be the average number of exeutions of the for-loop. We get

Z =
1

n

n∑

k=1

k =
n+ 1

2
.

3.12. SEARCHING AN UNORDERED ARRAY 47

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r3,(r1)

1 sgti r1,r3,#0

1 beqz r1,L3

1 lw r4,(r30)

1 lhi r1,((_a)>>16)&0xffff

1 addui r1,r1,(_a)&0xffff

1 lw r2,(r1)

1 addi r31,r2,#4

1 slli r1,r3,#0x2

1 add r2,r1,r2

L5:

Z lw r1,(r31)

Z seq r1,r1,r4

Z bnez r1,L8

Z addi r1,r0,#1

Z−1 addi r31,r31,#4

Z−1 sle r1,r31,r2

Z−1 bnez r1,L5

Z−1 nop

L3:

1 addi r1,r0,#0

L8:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.3: Searh program

The running time of the program happens to be 24+ 8Z mahine instru-

tions aording to �gure 3.3. This results in 24+4(n+1) = 4n+28mahine

instrutions on average, if the size of the array is n.

Is it neessary to look at a reurrene relation to solve this problem? At

�rst glane no, but this assumption is not ompletely orret.

The situation is just so simple that you an see the solution at one. Just

for fun it is also possible to solve it systematially with reurrene relations.

In order to do so, we have to redue the ase of n elements to the ase of

n − 1 elements. This is not ompliated: Z1 = 1, beause if we searh for

just one key and you �nd it then you use exatly one omparison. If n > 1,

we get Zn = 1 · 1
n
+ (1 − 1

n
)(1 + Zn−1) beause with a probability of

1
n
we

an �nd v in the �rst plae of the array and with a probability of 1 − 1
n

we have to searh it in the remaining n − 1 plaes. The latter task needs

another Zn−1 omparisons on average. The reurrene looks as follows:

Zn = 1+ (1−
1

n
)Zn−1

where Z1 = 1. This is a linear reurrene relation of �rst order that an be

solved with a summation fator. On page ?? we an �nd the solution as a

formula. In this ase we get

Zn = 1+

n−1∑

j=1

(

1−
1

j+ 1

)(

1−
1

j+ 2

)(

1−
1

j+ 3

)

· · ·
(

1−
1

n

)

= 1+

n−1∑

j=1

j

j+ 1

j+ 1

j+ 2

j+ 2

j+ 3
· · · n− 1

n
= 1+

n−1∑

j=1

j

n
= 1+

n− 1

2
=

n+ 1

2
.

The overall result is orret. Were we allowed to use this formula at all?

Yes, beause all pre-onditions are valid in partiular Z0 = 0.

48 CHAPTER 3. RECURRENCE RELATIONS

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#16

1 sw 0(r29),r2

1 sw 4(r29),r3

1 lhi r1,((_a)>>16)&0xffff

1 addui r1,r1,(_a)&0xffff

1 lw r2,(r1)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r31,(r1)

1 sgti r1,r31,#0

1 beqz r1,L3

1 lw r3,(r30)

1 addi r2,r2,#4

L9:

Z lw r1,(r2)

Z seq r1,r1,r3

Z bnez r1,L8

Z addi r1,r0,#1

Z−1 addi r31,r31,#1

Z−1 sgti r1,r31,#0

Z−1 bnez r1,L9

Z−1 addi r2,r2,#4

1 addi r2,r2,#-4

L3:

1 addi r1,r0,#0

L8:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.4: Another searh program

Let us now improve the searh algorithm in order to see what impat our

improvements have. In a �rst step we aess the array by a pointer instead

of an index. Moreover, let us ount the array elements bakwards in order

to have a more eÆient omparisons with zero. The resulting program is

int searh2 (int v) {
int i ;
int ∗ p = &a [0];
for(i = n ; i > 0; i−−) {

if(∗++p == v) return 1;
}
return 0;

}

The orresponding DLX assembler program an be found in �gure 3.4.

This time we get 24+8Z mahine instrutions, whih is 4n+24 on average.

This \improvement" is not very good beause we save only 4 instrutions.

It seems that it is not easy to improve this program signi�antly. There is,

however, one trik left that helps a lot: we avoid ounting. In order to do

so, we store v at the end of the array and onsequently we don't have to

hek anymore whether we reahed the end of the array:

int searh3 (int v) {
int i ;
int ∗ p = &a [0];
a [n + 1] = v ;

while(∗p 6= v) p++;

if(p == &a [n + 1]) return 0;
return 1;

}

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 49

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lw r3,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 lhi r4,#1

1 addui r4,r4,#34464

1 sw (r1),r4

1 addi r31,r2,#-4

1 addi r31,r31,#4

L9:

P−1 lw r2,(r31)

P−1 sgt r1,r2,r3

P−1 bnez r1,L9

P−1 addi r31,r31,#4

1 addi r31,r31,#-4

1 seq r2,r2,r3

1 bnez r2,L6

1 addi r1,r0,#0

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#16

1 sw 0(r29),r2

1 sw 4(r29),r3

1 lw r31,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 sw (r1),r31

1 addi r2,r2,#-4

1 addi r2,r2,#4

L9:

1 lw r1,(r2)

1 sne r1,r1,r31

1 bnez r1,L9

1 addi r2,r2,#4

1 addi r2,r2,#-4

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 slli r1,r1,#0x2

1 lhi r3,((_a+4)>>16)&0xffff

1 addui r3,r3,(_a+4)&0xffff

1 add r1,r1,r3

1 seq r2,r2,r1

1 bnez r2,L6

1 addi r1,r0,#0

1 addi r1,r0,#1

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 lw r30,-4(r30)

1 jr r31

1 nop

Figure 3.5: Intelligent searh. The branh to label L6 is never taken in a

suessful searh.

This time it turns out that 35 + 4Z mahine instrutions are exeuted.

On average this makes 2n + 37 instrutions. For big n this is muh faster

as the previous solutions, but for small n it might be slower. If you are

only interested in suessful searhes, then this more lever searh will be

superior for n ≥ 5.

3.13 Searching an ordered array and binary

search trees

Let us onsider the problem of searhing an ordered array. We assume as

usual that the array a[1], . . . , a[n] ontains n di�erent numbers, but this

time they are ordered. How long does it take on average to �nd one of these

numbers if we searh for eah of them with the same probability? (Again

this is a suessful searh.) We an also ask ourselves the question how long

it takes to �nd out that some number is not ontained in the array. Whih

probability distribution is the right one for this unsuessful searh? If

the algorithm is based only on omparisons, then its running time depends

50 CHAPTER 3. RECURRENCE RELATIONS

on the plae where the number that we are searhing for belongs to. In

prinipal there are n+ 1 plaes, i.e., before the �rst array element, behind

the last array element, or in one of the n− 1 gaps in between.

Again, the �rst algorithm we onsider searhes the array from left to right.

As soon as we see an array element that is bigger than the key we are

searhing, we an abort the program. Let us assume we an put a pseudo

number H behind the end of the array. This H should be bigger than all

numbers that our in the array.

int searh4 (int v)

{
int ∗ p;
a [n + 1] = H ;
p = a ;
do { p++; } while(∗p < v);

if(∗p == v) return 1;
else return 0;

}

The running time of this program depends on how often the instrution

p++ is arried out. If the searh in unsuessful we inrease p until it points

to a[K] where K is the smallest index with a[K] ≥ v. In the beginning p

points to a[0]. In the ase of an unsuessful searh the pointer is inreased

exatly K times. K is a random variable with the distribution

Pr[K = k] =
1

n+ 1
for 1 ≤ k ≤ n+ 1.

Let us all the average number of times the instrution p++ is arried out

Pn if the array has n elements. With other words Pn is simply the expeted

value of K:

Pn = E[K] =

n+1∑

k=1

k · Pr(K = k) =
(n+ 2)(n+ 1)

2(n+ 1)
= 1+

n

2

How big is Pn in the ase of an unsuessful searh? If the searh is suess-

ful then a[K] = v for exatly one 1 ≤ K ≤ n. In that ase Pr[K = k] = 1/n.

Consequently, we get

Pn = E[K] =

n+1∑

k=1

k · Pr[K = k] =
(n+ 1)n

2n
=

1

2
+

n

2
.

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 51

1 sw -4(r29),r30

1 add r30,r0,r29

1 sw -8(r29),r31

1 subui r29,r29,#24

1 sw 0(r29),r2

1 sw 4(r29),r3

1 sw 8(r29),r4

1 lw r3,(r30)

1 lhi r1,((_n)>>16)&0xffff

1 addui r1,r1,(_n)&0xffff

1 lw r1,(r1)

1 lhi r2,((_a+4)>>16)&0xffff

1 addui r2,r2,(_a+4)&0xffff

1 slli r1,r1,#0x2

1 add r1,r1,r2

1 lhi r4,#1

1 addui r4,r4,#34464

1 sw (r1),r4

1 addi r31,r2,#-4

1 addi r31,r31,#4

L9:

P−1 lw r2,(r31)

P−1 sgt r1,r2,r3

P−1 bnez r1,L9

P−1 addi r31,r31,#4

1 addi r31,r31,#-4

1 seq r2,r2,r3

1 bnez r2,L6

1 addi r1,r0,#0

L6:

1 lw r2,0(r29)

1 lw r3,4(r29)

1 lw r4,8(r29)

1 lw r31,-8(r30)

1 add r29,r0,r30

1 jr r31

1 lw r30,-4(r30)

Figure 3.6: Linear searh in an ordered array.

We an expet that the suessful and unsuessful ase are similar with

regard to the running time.

Let us now ount the number of exeuted mahine instrutions of the or-

responding mahine program in Figure 3.6.

The running time is 27+4Pn on average, i.e., 2n+31 for a suessful searh

and 2n+ 29 for an unsuessful searh.

In the following we will analyse algorithms that are based on omparisons

with the help of the theory of binary searh trees. This theory helps us to

analyse the average number of omparisons that some lass of algorithms

exeute.

Not suprisingly a binary searh tree is a binary tree. It onsists either of

only one node that we all the root or a root that has two hildren that

are themselves binary trees. We will distinguish between internal and

external nodes: An internal node is a node that has itself two hildren,

an external node in ontrary has no hildren. External nodes are usually

alled leaves.

The omparisons performed by an algorithm lead in a natural way to a

binary searh tree: The root of a tree will be labeled with the �rst om-

parison the algorithm makes. The left hild of the root will be the binary

searh tree of the following part of the algorithm that is exeuted if the

result of the �rst omparisons was smaller. Similarly the right hild of the

root is the binary searh tree for the result bigger. Let us assume for the

moment that we are analysing a searh algorithm and if the outome of

a omparison is equal then the algorithm will stop the searh beause the

desired element has been found. With other words we assume that every

omparison is against the key we are searhing for.

52 CHAPTER 3. RECURRENCE RELATIONS

Figure 3.7: A searh tree for a linear searh in an ordered array of length 10.

As usual we draw binary searh trees as a binary tree but we will draw

internal nodes as irles and external nodes as squares. You an �nd the

depition of a searh tree for an algorithm for linear searh in an ordered

array in Figure 3.7. The size of the array is in this ase 10.

In the following we will reursively de�ne some important parameters of a

binary searh tree T : The size |T |, whih is exatly the number of internal

nodes, the internal path length π(T) and the external path length ξ(t).

If T onsists only of a root we de�ne |T | = 0, π(T) = 0, ξ(T) = 0. In the ase

that T onsists of a root that has the binary searh trees T1 and T2 as its

hildren, then we will de�ne |T | = |T1|+ |T2|+1, π(T) = π(T1)+π(T2)+ |T |−1

and ξ(T) = ξ(T1) + ξ(T2) + |T |+ 1.

Informally, the internal path length is the sum of all levels of all internal

nodes and the external path length is the sum of all levels of all external

nodes. The level of a node is its distane to the root, where the root itself

is on Level 0.

One beautiful fat about these de�nitions is that if we know π(T) and

ξ(T) we an easily ompute the average number of omparisons that an

algorithm performs.

Theorem 5. Let T be the omparison tree of an algorithm and let every

element be hosen with uniform probability in the ase of a suessful searh

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 53

or eah position between elements inluding the outer left and outer right

position with uniform probabilty in the ase of an unsuessful searh, then

the average number of omparisons is

C+ =
π(T)

|T |
+ 1 in the suessful ase,

C− =
ξ(T)

|T |+ 1
in the unsuessful ase.

Moreover the following orrespondane holds between the internal and ex-

ternal path length:

ξ(T) = π(T) + 2|T |

There is also the following orrespondane between C+
and C−

:

C− = (C+ + 1)

(

1−
1

|T |+ 1
)

)

The number of external nodes is always |T |+ 1.

Let us use these formulas for a linear searh in an array of n elements. As

searh trees we get aterpillars Ln as you an see in �gure 3.7. The internal

path length is

π(Ln) =

n−1∑

k=0

k =
n(n − 1)

2
,

beause on eah level between 0 and n − 1 there is exatly one internal

node. The external path length is then

ξ(Ln) = π(Ln) + 2n =
n(n+ 3)

2
.

The average number of omparisons in the ase of an unsuessful searh

is

π(Ln)

|Ln|
+ 1 =

n− 1

2
+ 1 =

n+ 1

2

and the number of omparisons in the ase of an unsuessful searh should

be, aording to our formula,

ξ(Ln)

|Ln|+ 1
=

n(n+ 3)

2(n+ 1)
=

n

2
+

n

n+ 1
.

Obviously this is not orret.

54 CHAPTER 3. RECURRENCE RELATIONS

Where is the mistake? The error lies in the way the program proeeds

if the key that we searh is bigger than a[n] i.e. the last element in the

array. After the program veri�ed that a[n] < v a onsequent omparison

is no longer neessary. Still the program arries out another omparison

with a[n+1]. This is not a omparison aording to our de�nition beause

there is only one possible answer and the omparison is redundant.

The theory of omparison trees works only if the probability of reahing

every external node in an unsuessful searh is the same. This might not

be true if there are redundant omparisons.

The last omparison annot be spotted in the searh tree we drew: The

searh tree ontains only n internal nodes labeled with the omparisms

a[1] : v, . . . , a[n] : v. If the algorithm visits the last external node in the

tree it performs another redundant omparison and that happens with a

probability of 1/(n + 1) in an unsuessful searh. The atual number of

omparisons taken on average in an unsuessful searh is onsequently

ξ(Ln)

|Ln|+ 1
+

1

n+ 1
=

n

2
+ 1,

and this oinides with the result we got when we analysed this program

traditionally without the help of omparison trees.

No problem would have oured if the program were written in the following

form

int searh5 (int v)

{
int i = 0;
do { i++; } while(i ≤ n && a [i] > v);

if(i == n + 1) return 1;
else return 0;

}

Here indeed only n/2+n/(n+1) omparisms are done on average in an un-

suessful searh. This program however is muh slower. What we should

learn from this: The formulas for the average number of omparisons are

only orret if all preonditions are met. We have to hek them arefully

and have to take any exeptions into onsideration.

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 55

Binary search

If the array is ordered, binary searh will be the method of hoie: We will

ompare v with the key that is approximately in the middle of the array.

Doing so redues the problem to searhing the key in an array of only half

the size. The following algorithm does exatly that:

int binsearh(int v)

{
int l , r ,m ;
l = 1; r = n ;
while(l ≤ r) {

m = (r + l)/2;
if(v == a [m]) return 1;
if(v < a [m]) r = m − 1; else l = m + 1;

}
return 0;

}

This algorithm works as follows. It uses two variables l and r to remember

the subarray in whih we still have to searh. Here l is the leftmost and r

the rightmost element of this subarray. The algorithm ompares the key to

the key in the middle. If it is the orret one, the algorithm immediately

terminates. Otherwise the right or left border of the subarray that still

might ontain v will be adjusted and we ontinue the searh.

If we designate by Bn how often the instrution m = (r+ l)/2 is performed

then Bn is exatly the number of omparisons v : a[i]. Let us �rst onsider

the unsuessful searh beause it is easier to analyse and also let us start

with the worst ase.

Let N = r− l+ 1 be the size of the ative subarray. Let CN be the number

of times the instrution m = (r + l)/2 is still exeuted if now r− l+1 = N.

With these de�nitions in mind we get C1 = 1 beause N = 1 implies that

r = l and after exeuting m = (r + l)/2 the algorithm either terminates,

or r is inreased, or l is dereased. After that the while-loop immediately

terminates.

If N > 1 then m = (r + l)/2 is exeuted at least one and after that either

r := ⌊(r + l)/2⌋ − 1 or l := ⌊(r + l)/2⌋ + 1 will be exeuted. In both ases

this implies N := ⌊N/2⌋; as we expeted the size of the ative subarray is

ut roughly in half with eah iteration.

56 CHAPTER 3. RECURRENCE RELATIONS

Figure 3.8: A searh tree for binary searh in an ordered array of size 10.

How does the binary searh tree for this algorithm look like? Figure 3.8

shows the searh tree for n = 10. In general it will be an almost omplete

binary tree in whih only nodes on the last level might be missing.

If the searh tree has exatly 2k external nodes then all of them are loated

on level k and the external path length is exatly k2k. Let us now look at

the general ase. If we have n internal nodes we have exatly n+1 external

nodes and 2(n+1−2⌊log(n+1)⌋) of them are loated on level ⌊log(n+1)⌋+1.

The remaining nodes i.e. exatly 2⌊log(n+1)⌋+1 − n − 1 of them are loated

on level ⌊log(n + 1)⌋. If we denote the searh tree for binary searh in an

array with n elements by Bn we onsequently get

ξ(Bn) = (n+ 1)(⌊log(n+ 1)⌋+ 2) − 2⌊log(n+1)⌋+1.

From this it is easy to ompute the internal path length:

π(Bn) = ξ(Bn) − 2n = (n+ 1)⌊log(n+ 1)⌋− 2⌊log(n+1)⌋+1 + 2.

As always it is a good idea to test this formula on a small example. Let us

again hoose n = 10 beause we already have the orresponding searh tree

in �gure 3.8. We get ξ(B10) = 11·5−16 = 39 and π(B10) = 11·3−16+2 = 19.

Both results an be easily heked with the help of the binary searh tree

in �gure 3.8.

Exercises

3.1 Solve the following reurrene relation and �nd a nie way to write down the

solution.

c0 = 2

c1 = 4

cn = c
log cn−1

n−2

3.13. ORDERED ARRAYS AND BINARY SEARCH TREES 57

3.2 Drill Sergeant Even is in a bad mood and lets his new reruits marh in a row

of two along the yard. He ips his lid whenever the number of reruits is odd and

then drives them along DEATH LANE. When this happens to a reruit he gets

sik with a probability of 1/2 and annot partake in the exerise anymore. This

spetale is repeated until the number of reruits beomes even.

How many runs through DEATH LANE take plae on average?

3.3 Solve the following reurrene! Let a0 = 0, a1 = 3, and an = 4an−1 − 4an−2

for n > 1.

3.4 Solve the following reurrene relation. Let Es sei b1 = b2 = b3 = 1 and

bn = 3bn−1 − 4bn−2 + 12bn−3 for n > 3.

3.5 Compare the solution 2(nHn)+2(Hn)−2(n) = 2nHn+2Hn−2n form page 39

to the general solution from the �rst hapter by setting M = 0.

3.6 Given an array a of length n, an algorithm ompares all pairs (a[i], a[j]) for

all i < j ≤ n, and then alls itself reursively on all proper pre�xes of a.

How often does the algorithm ompare two pairs? Use the repertoire method!

3.7 Improve the estimate of (??). The goal is to get an additive error term of

O(1/n) or better. How far away is your new estimate for a10 from the true value?

3.8 Use a summation fator on (3.4) and �nd the solution of the reurrene (3.3)

not in losed form, but as a summation.

3.9 Solve the reurrene

a0 = 8000

a1 = 1/2

an+2 + an+1 − n2an = n!

by order redution.

3.10 Compute the number of times the body of the while-loop is performed, if

initially 0 < i holds.

while i <= j

i := i+j ;

if i > j then j:=j+10 ;

3.11 Solve the last exerise with the assumption that i ≤ 0.

3.12 Analyse the running time of a suessful searh for the program in Figure 3.3

if every element in the array ours twie and again every permutation has the

same probability.

3.13 Compare all three searh algorithms aording to suessful searhes.

3.14 Consider the following algorithm that searhes an element x in a sorted

array a of length n = km+ 1:

58 CHAPTER 3. RECURRENCE RELATIONS

i:= 1 ;

while a[i]<=x

if a[i]=x then return i ;

i:=i+m ;

if i>n return 0 ;

for j=i-1 downto max(1,i-(m-1))

if a[j]=x then return j ;

return 0 ;

a) Draw the searh tree and ompute the internal and external path length for

n = 10 and m = 3.

b) Determine C+
and C−

for arbitrary m, k.

) What is, for given n, the best hoie for m w.r.t. the running time?

3.15 Verify that the laim N := ⌊N/2⌋ on page 55 is orret.

3.16 We want to ompare the following two programs for a searh in a sorted

array:

int binsearch (double v)

f

int l , r ,m;

l=1; r=N;

while (l ≤ r) f

m=(r+l)/2;

if (v ≡ a[m℄) return 1;

if (v<a[m℄) r=m−1; else l=m+1;

g

return 0;

g

int binsearch2(double v)

f

int l , r ,m;

l=1; r=N;

while (r−l>1) f

m=(r+l)/2;

if (v<a[m℄) r=m−1; else l=m;

g

if (a[l ℄ ≡ v) return 1;

if (a[r ℄ ≡ v) return 1;

return 0;

g

Analyse how many if-instrutions are exeuted by the programs in ase of a su-

essful or unsuessful searh for v. Find an exat solution for the �rst program

and an estimate of the form f(n) + O(1) for the seond one. Make the usual

assumptions about v.

Chapter 4

Generating functions

We are often interested in a series (g0, g1, g2, . . .), where the oeÆients gn

indiate the usage of a ressoure or another ombinatorial parameter. The

series is often impliitely represented, e.g., given by a reursion equation.

We all

G(z) =

∞∑

n=0

gnz
n

the generating funtion (GF) of the series (gn)
∞

n=0. One fundamental task

in the analysis of algorithms is to �nd an expliit expression for gn or a

good approximation of it. Generating funtions are the most important

tool for this purpose that we will get to know.

Very often an important step in the analysis of an algorithm is to extrat

the n-th oeÆient of a generating funtion G(z). Theoretially, we ould

develop G(z) into a Taylor series,

G(z) = G(0) + zG ′(0) +
z2

2
G ′′(0) +

z3

3!
G ′′′(0) + . . . ,

where

[zn]G(z) =
dn

dzn
G(z)

n!

∣

∣

∣

∣

z=0

from whih we an read of gn diretly. By [zn]G(z) we denote the oeÆient

of zn in the power series G(z).

To go over the Taylor series is usually too stony and normally there are

better methods to extrat the nth oeÆient. A table with important

known generation funtions an be very useful, beause we an look them

59

60 CHAPTER 4. GENERATING FUNCTIONS

Series an OGF

1, 0, 0, 0, 0, 0, 0, . . . (n = 0) 1

0, 1, 0, 0, 0, 0, 0, . . . (n = 1) z

1, 1, 1, 1, 1, 1, 1, . . . 1
1

1− z

0, a, a2, a3, a4, a5, . . . an 1

1− az

1, 2, 3, 4, 5, 6, 7, 8, . . . n+ 1
1

(1 − z)2

(

r

0

)

,

(

r

1

)

,

(

r

2

)

,

(

r

3

)

, . . .

(

r

n

)

(1 + z)r

(

k

k

)

,

(

k+ 1

k

)

,

(

k+ 2

k

)

,

(

k+ 3

k

)

, . . .

(

k+ n

k

)

1

(1− z)k+1

1, 1,
1

2!
,
1

3!
,
1

4!
, . . .

1

n!
ez

0, 1,
1

2
,
1

3
,
1

4
, . . .

1

n
(n > 0) ln

1

1− z

0, 1,
3

2
,
11

6
,
25

12
, . . . Hn

1

1− z
ln

1

1− z

Table 4.1: Important generating funtions and their series.

61

up quikly possibly after manipulating them �rst. Table 4.1 ontains the

most important generating funtions and the orresponding series.

With the help of tables 4.1 and 4.2 and other tables from textbooks many

funtions an be expanded into a power series. All you have to do is to

rewrite the generating funtions in suh a way that they orrespond to an

entry in one of the tables.

Let us apply what we have seen so far to a simple reurrene relation, the

reurrene for Fibonai numbers:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 1

The �rst step to deal with suh a reurrene relation is to �nd a single

formular whih de�nes Fn for all n. Getting rid of ase distintions makes

life easier. In the following we will use the following onvention:

(Condition) =

{
1 if Condition is true

0 otherwise

The reurrene relation Fn = Fn−1 + Fn−2 holds only for n > 1, for n = 1 it

is wrong beause F1 = 1, but F0 + F−1 = 0 (we assume Fn = 0 for n < 0).

Lukily, however, Fn = Fn−1+Fn−2 holds true for n = 0. The following, still

quite simple formula holds true for all n ∈ Z:

Fn = Fn−1 + Fn−2 + (n = 1) (4.1)

We will fous now on the generation funtion

G(z) =

∞∑

n=0

Fnz
n.

In order to get a losed formula for G(z) we multiply both sides of (4.1)

with zn and sum over n from 0 to ∞:

∞∑

n=0

Fnz
n =

∞∑

n=0

Fn−1z
n +

∞∑

n=0

Fn−2z
n +

∞∑

n=0

(n = 1)zn (4.2)

The last sum is simply z and the other sums an be rewritten to get

G(z) = zG(z) + z2G(z) + z. (4.3)

62 CHAPTER 4. GENERATING FUNCTIONS

A(z) =

∞∑

n=0

anz
n B(z) =

∞∑

n=0

bnz
n

zA(z) =

∞∑

n=0

an−1z
n (Right shift)

A(z) − a0

z
=

∞∑

n=0

an+1z
n (Left shift)

A ′(z) =
∞∑

n=0

(n+ 1)an+1z
n (Derivative)

∫ z

0

A(t)dt =

∞∑

n=1

an−1

n
zn (Integral)

A(λz) =

∞∑

n=0

λnanz
n (Sale)

A(z) + B(z) =

∞∑

n=0

(an + bn)z
n (Addition)

(1− z)A(z) =

∞∑

n=0

(an − an−1)z
n (Di�erene)

A(z)B(z) =

∞∑

n=0

(

n∑

k=0

akbn−k

)

zn (Convolution)

A(z)

1− z
=

∞∑

n=0

(

n∑

k=0

ak

)

zn (Partial sum)

Table 4.2: Some operations for generating funtions. We de�ne an = bn = 0

for n < 0.

63

We an diretly get this equation faster from (4.1) if we use the rules from

table 4.2. The �rst two terms of the right side of Fn−1 and Fn−2 are the

same series as Fn but shifted by one, respetively two positions to the

right and therefore their generating funtions are zG(z) and z2G(z). The

generation funtion of (0, 1, 0, 0, 0, 0, . . .) is z beause it is simply the series

(1, 0, 0, 0, 0, 0, . . .) shifted one position to the right. The last series an be

found in table 4.1. The generation funtion of the right hand side is now

simply the sum of the three funtions (Addition rule). In this way we obtain

an algebrai equation for G(z). Sometimes instead of an algebrai equation

we might get a di�erential, integral, or integro-di�erential equation.

If we solve (4.3) for G(z), then we obtain a solution of the algebrai equation

and therefore a losed formula for G(z):

G(z) =
z

1− z− z2

What remains to do is to expand G(z) into a power series. To do so we

rewrite G(z) in suh a way that we an �nd it in table 4.1. Hew we an use

a partial fration deomposition of the rational funtion 1/(1− z− z2). To

do so we need the roots of z2 + z− 1, whih are

1

φ
=

√
5− 1

2
and

1

φ̂
=

−
√
5− 1

2
.

That means we an write

1

1− z− z2
=

A

1− φz
+

B

1− φ̂z
,

where we still have to �nd out what the parameters A and B are.

Setting z = 0 yields 1 = A + B, so B = 1 − A. Setting z = 1 yields

−1 = A/(1−φ)+(1−A)/(1−φ̂). From 1/(1−φ) = −φ and 1/(1−φ̂) = −φ̂

we get 1 = φA + φ̂ − φ̂A = φ̂ +
√
5A beause of φ − φ̂ =

√
5. This gives

us A = φ/
√
5.

From Table 4.1 we learn that

1

1− φz
=

∞∑

n=0

φnzn and

1

1− φ̂z
=

∞∑

n=0

φ̂nzn.

Altogether we get

G(z) =
z

1− z− z2
= Az

∞∑

n=0

φnzn + Bz

∞∑

n=0

φ̂nzn,

64 CHAPTER 4. GENERATING FUNCTIONS

from whih we simply an read of the oeÆzient of zn:

[zn]G(z) = Aφn−1 + Bφ̂n−1 =
1√
5

(

φn − φ̂n
)

Of ourse, we ould get the same result using lassial methods as we are

dealing with a homogeneous linear reurrene relation with onstant oef-

�ients. It is good to see, however, that the generating funtion mahinery

awlessly works on suh a simple example.

We are not going to prove the orretness of all formul� in Tables 4.1

and 4.2. The proofs are quite similar and not hard. As an example we

show the validity of the last two entries of table 4.1.

First, we have to deal with the series

0, 1,
1

2
,
1

3
,
1

4
,
1

5
, . . .

The generating funtion of this series an be found with the help of the

integration rule in Table 4.2 as

∞∑

n=1

1

n
zn =

∫ z

0

1

1− t
dt,

sine 1/(1 − z) is the GF of (1, 1, 1, 1, . . .). We an solve this integral with

the formula ∫
f ′(t)

f(t)
dt = ln(f(t)) + C

and get the GF ∫ z

0

1

1− t
dt = ln

1

1− z
.

Next, we look at the series of Harmoni numbers

H0, H1, H2, H3, H4, . . .

Expanding Hn into a sum yields

∞∑

n=0

(

n∑

k=1

1

k

)

zn.

This expression is a speial ase of a partial sum with ak = 1/k for k > 0

and a0 = 0. The generating funtion for 1/n is ln(1/(1− z)) and using the

formula for a partial sum yields

∞∑

n=0

(

n∑

k=1

1

k

)

zn =
1

1− z
ln

1

1− z
.

4.1. COUNTING DATA STRUCTURESWITHGENERATING FUNCTIONS65

4.1 Counting Data Structures with Generat-

ing Functions

We an ount the number of objets of given sizes with the help of gener-

ating funtions. As a �rst example we will apply this tehnique to binary

trees.

A binary tree is a reursive data struture. It is either just a root or a root

with a two hildren (the left and the right hild), whih are themselves

binary trees. We all leafs also external nodes and non-leafs internal

nodes. We are interested in the number of binary trees with a given number

of internal nodes.

We de�ne the generating funtion

T(z) =

∞∑

n=0

tnz
n,

where tn is the number of binary trees with n internal nodes.

For tn we an write down the reurrene

tn =

n−1∑

k=0

tktn−1−k + (n = 0).

After multiplying the equation by zn and summing over n we get

T(z) =

∞∑

n=0

(

n−1∑

k=0

tktn−1−k

)

zn + 1

= z

∞∑

n=0

(

n∑

k=0

tktn−k

)

zn + 1

= zT(z)2 + 1

There is a simple shortut that diretly leads to this relationship: Let T

be the set of all binary trees. Informally T = E + ITT using a little bit of

abstration, where E denotes an external and I an internal node. Swithing

to generating funtions we get E(z) = z0 = 1 and I(z) = z1 = z beause I,

resp. E, ontain exatly one tree with one, resp. zero, internal nodes. Then

T(z) = E(z) + I(z)T(z)T(z) = 1+ zT(z)2.

66 CHAPTER 4. GENERATING FUNCTIONS

All left to do is to expand T(z) into a power series in order to read o�

tn = [zn]T(z).

We solve for T(z), whih is easy in this ase as it is a simple quadrati

equation. This gives us a loses formula for T(Z):

T(z) =
1

2z
± 1

2z

√
1− 4z

There are two solutions to the quadrati equation, but there is only one

solution to the original reurrene relation and, of ourse, there is only one

number of binary trees of a ertain size.

So how is it possible that we have two solutions for the generating funtion?

Easy: One solution is the orret one and an be expanded into a power

series. The other solution annot be expanded into a power series and in

this sense does not really exist. After all, we are looking for a power series

and in terms of power series there is really only one solution for T(z).

We will easily see, whih solution is the orret one. Let us �rst expand√
1− 4z into a power series, whih an be done at one using Newton's

formula.

T(z) =
1

2z
± 1

2z

√
1− 4z =

1

2z
± 1

2z

∞∑

n=0

(

1/2

n

)

(−4)nzn

Now we see that the solution with \minus" is the orret one, beause then

the pole at z = 0 is anelled.

T(z) = −
1

2z

∞∑

n=1

(

1/2

n

)

(−4)nzn = −
1

2

∞∑

n=0

(

1/2

n+ 1

)

(−4)n+1zn

We an now read o� the oeÆients:

tn = [zn]T(z) = −
1

2

(

1/2

n+ 1

)

(−4)n+1

It annot hurt to hek the formula on a small example. Let n = 3.

t3 = −
1

2

(

1/2

n+ 4

)

(−4)4 = 5

We ould simplify the result in order to get a better readable formula, but

let us �rst study a di�erent approah to solve this reurrene, whih avoids

some of the small problems we faed in the derivation above.

4.1. COUNTING DATA STRUCTURESWITHGENERATING FUNCTIONS67

The most annoying step was solving the quadrati equation. Although

quadrati equations are easy to solve, you an get nervous thinking about

polynomial equations of higher order, whih will our when we look at

ternary or other trees. The next theorem relates the oeÆients of power

series that are \inverse" to eah other and opens a path to avoid solving

polynomial equations in some ases. In fat it has many more appliations.

Theorem 6. (Lagrange inversion)

Let G(z) be a GF suh that z = f(G(z)) with f(0) = 0 and f ′(0) 6= 0. Then

[zn]G(z) =
1

n
[un−1]

(

u

f(u)

)n

.

We annot apply Lagrange inversion diretly to T(z) beause the resulting

f(z) does not ful�ll the neessary preonditions. We an, however, let

H(z) = zT(z) and apply Lagrange inversion to H(z). The orresponding

funtional equation for H(z) is

H(z) = z+H(z)2,

whih an easily be solved for z, but presents a quadrati equation when

solving for H(z). We an write z = f(H(z)) for f(t) = t− t2. With f(0) = 0

and f ′(0) = 1 the ondition for the theorem on Lagrange inversion are

ful�lled and the theorem yields us

[zn]H(z) =
1

n
[un−1]

(

1

1− u

)n

.

A formula from Table 4.1 mathes the right hand side:

1

(1 − u)n
=

∞∑

k=0

(

k + n− 1

k

)

uk

This yields

[zn]H(z) =
1

n

(

2n− 2

n− 1

)

.

For T(z) we have to shift the sequene and get

tn =
1

n+ 1

(

2n

n

)

.

Let us hek this formula again for n = 3:

t3 =
1

4

(

6

3

)

= 5

68 CHAPTER 4. GENERATING FUNCTIONS

4.2 Bivariate Generating Functions

Up to now we onsidered generating funtion with one variable z that

represents a series. We an generalize this onept to funtions with more

than one variable. Suh a funtion represents a multi-dimensional series.

For two variables we all suh a funtion a bivariate generating funtion

(BGF).

Let us run through a simple example of using BGF's for whih we already

know the result. How many binary strings are there that ontain exatly

m ones and have length n?

The set of all binary strings an be reursively de�ned as follows:

B = {ǫ} ∪ 0B ∪ 1B

We de�ne the BGF

B(u, z) =
∑

n,m≥0

bmnu
mzn,

where bmn is the number of di�erent bitstrings of length n that ontain

exatly m ones. We get the equation

B(u, z) = 1+ zB(u, z) + uzB(u, z).

We solve for B(u, z) and expand the result into a power series:

B(u, z) =
1

1− z(1+ u)
=

∞∑

n=0

zn(1 + u)n =

∞∑

n=0

n∑

k=0

(

n

k

)

znuk

We an read o� bmn = [umzn]B(u, z) =
(

n
m

)

.

4.3 Exponential Generating Functions

For a series g0, g1, g2, g3, . . . we de�ne the exponential generating funtion

(EGF)

G(z) = g0

1

1!
+ g1

z

2!
+ g2

z2

3!
+ g2

z3

3!
+ · · · =

∞∑

n=0

gn

zn

n!
.

The nth oeÆzient in the EGF G(z) of (gn)
∞

n=0 is then

gn = n![zn]G(z).

4.4. THE SYMBOLIC METHOD 69

Sometimes we reah our goal using an EGF easier than with a GF and

sometimes it is the other way around. The di�erene lies in the way GFs

and EGFs transform and are formed from a series. Table 4.3 ontains

EGFs for several series and Table 4.4 transformation rules. These two

tables orrespond to tables 4.1 and 4.2 for GFs.

4.4 The Symbolic Method

In this subsetion we are going to learn more systematially how to ount

objets with the help of generating funtions without going throug reur-

rene relations. We put an emphasis on reursive objets.

To onstrut a set of objets we alle the following operations wher M is

the new set and M1 are M2 sets that are already de�ned.

1. atomi objet: M = {x}

2. pairs of objets: M = M1 ×M2

3. union of objet sets: M = M1 ∪M2

4. �nite series of objets: M = M1 ∪M1 ×M1 ∪M1 ×M1 ×M1 ∪ · · ·

The size of an objet is the sum of the sizes of all atoms of whih it onsists.

A preise de�nition uses the reursive onstrution of an objet. We denote

the size of an objet x by |x|.

|x| = f(x) (atomi objet)

|(x, y)| = |x|+ |y| (pairs of objets)

|(x1, x2, . . . , xm)| = |x1|+ · · ·+ |xm| (�nite series)

The size of an atomi objet an be de�ned arbitrarily. In the following

we are interested in the number of objet of a ertain size in a given set of

objets.

Let M(z) =
∑

∞

n=0 mnz
n
be the generating funtion for mn where mn is the

number of objets in M with size n:

mn =
∣

∣

{
x ∈ M

∣

∣ |x| = mn

}∣
∣

70 CHAPTER 4. GENERATING FUNCTIONS

Series an EGF

1, 0, 0, 0, 0, 0, 0, . . . (n = 0) 1

0, 1, 0, 0, 0, 0, 0, . . . (n = 1) z

1, 1, 1, 1, 1, 1, 1, . . . 1 ez

1, c, c2, c3, c4, c5, c6, . . . cn ecz

0, 1, 2, 3, 4, 5, 6, . . . n zez

(

0

m

)

,

(

1

m

)

,

(

2

m

)

, . . .

(

n

m

)

zm

m!
ez

1, 0, 1, 0, 1, 0, 1, . . . 1+ (−1)n osh(z) =
1

2
(ez + e−z)

0, 1, 0, 1, 0, 1, 0, . . . 1− (−1)n sinh(z) =
1

2
(ez − e−z)

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
, . . .

1

n+ 1

ez − 1

z

0!, 1!, 2!, 3!, 4!, 5!, 6!, . . . n!
1

1− z

Table 4.3: Important EGFs and their series.

4.4. THE SYMBOLIC METHOD 71

A(z) =

∞∑

n=0

an

zn

n!
B(z) =

∞∑

n=0

bn

zn

n!

∫ z

0

A(t)dt =

∞∑

n=0

an−1

zn

n!
(right shift)

A ′(z) =
∞∑

n=0

an+1

zn

n!
(left shift)

zA(z) =

∞∑

n=0

nan−1

zn

n!
(index multipliation)

A(z) −A(0)

z
=

∞∑

n=1

an+1

n+ 1

zn

n!
(index division)

A(λz) =

∞∑

n=0

λnan

zn

n!
(saling)

A(z) + B(z) =

∞∑

n=0

(an + bn)
zn

n!
(addition)

A ′(z) −A(z) =

∞∑

n=0

(an+1 − an)
zn

n!
(di�erene)

A(z)B(z) =

∞∑

n=0

(

n∑

k=0

(

n

k

)

akbn−k

)

zn

n!
(binomial onvolution)

ezA(z) =

∞∑

n=0

(

n∑

k=0

(

n

k

)

ak

)

zn

n!
(binomial sum)

Table 4.4: Some operations with EGFs. Again we de�ne an = bn = 0 for

n < 0.

72 CHAPTER 4. GENERATING FUNCTIONS

Let M1(z) and M2(z) be the orresponding generating funtions for the

sets M1 and M2. Let x denote an atomi objet and f be the funtion that

maps atomi objet to there sizes. Then the following formulas show how

to onstrut M(z):

M = ∅ −→M(z) = 0

M = {x} =⇒M(z) = z|x|

M = M1 ∪M2 −→M(z) = M1(z) +M2(z) if M1 ∩M2 = ∅
M = M1 ×M2 −→M(z) = M1(z)M2(z)

M =

∞
⋃

k=1

Mk
1 −→M(z) =

M1(z)

1−M1(z)

Binary trees, for example, an be de�ned as

B = ∪©× B × B,

where | | = 0 and |© | = 1. This leads diretly to a funtional equation

for B(z):

B(z) = 1+ zB(z)2

It is the same equation we have gotten by using reurrenes and we already

solved it.

Ordered, rooted trees with an arbitrary number of hildren an be de�ned

as

T = ∪©×
∞
⋃

k=1

T k,

whih immeadiate yields the following equation:

T(z) = 1+
zT(z)

1− T(z)

If we solve this equation for T(z) we get:

T(z) = 1−
z

2
± 1

2

√

z(z− 4).

This funtion, however, annot be expanded into a power series. We annot

even say what T(0) is. It does not seem to be a real number. We know,

on the other hand, that if T(z) =
∑

∞

n=0 tnz
n
then T(0) = t0, the number

of trees of size 0. We de�ned sizes of atomi objets just as in the ase of

4.4. THE SYMBOLIC METHOD 73

binary trees: An internal node has size one and an external node size zero.

So there is exatly one tree of size zero and that means T(0) = 1. How is

this ontradition possible?

Let us ount again. Aording to our de�nition there is exatly on tree of

size zero, but how many trees of size one are there? Well, suh a tree must

have exatly one internal node, whih has to be the root. It an have one,

two, three, or any other number of hildren that are then external nodes.

All these trees have size one, but there are in�nitely many. So t1 would not

be a natural number. Obviously, the symboli does not work for in�nitely

big sets of objets that have a �xed number nor should it work. We an

express only �nite numbers with generating funtions.

Let us form the question in a di�erent way that makes more sense: How

many rooted, oriented trees are there with n nodes, ounting both internal

and external ones?

Now we get the funtional equation

T(z) = z+
zT(z)

1− T(z)
,

whih looks as follows if solved for T(z):

T(z) =
1

2
± 1

2

√
1− 4z

We an easily expand this one into a power series:

T(z) =
1

2
+

1

2

∞∑

n=0

(

1/2

n

)

(−4)nzn

For n > 0 we get

[zn]T(z) = −
1

2

(

1/2

n

)

(−4)n

Testing the losed formula with small numbers shows that indeed there are

exatly 14 trees of size 5, whih an be veri�ed by hand. Even simpler to

hek is the fat that there are indeed only two trees with exatly three

nodes.

Up to now we assumed that the same atomi objets are not distinguishable.

For example, the set objets de�ned in the following ontains exatly one

objet of size n for eah n > 0 (and no objet of size 0):

A = {x} ∪ {x}×A

74 CHAPTER 4. GENERATING FUNCTIONS

The set A simply onsists of all n-tupels (x, x, x, . . . , x) and for eah size

there is exatly one of them.

If we distinguished atoms from eah other, we would get n! di�erent n-

tupels.

Let us all objets as de�ned up to now unlabeled objets and objets,

where atoms are distinguished from eah other, labeled objets.

For these labeled objets EGFs are the tool of hoie beause there are by

a fator of n! more labeled than unlabeled objets if they onsists of atomi

objets of size 1. If the atomi objets are bigger the fator is di�erent, but

in general there are muh more labeled than unlabeled objets and EGFs

are better at very big numbers.

Now let M̂(z) be the EGF

M̂(z) =

∞∑

n=0

mn

zn

n!
,

where mn denotes the number of di�erent labeled objets of size n in the

set M.

M = ∅ −→ M̂(z) = 0

M = {x} −→ M̂(z) = z|x|

M = M1 ∪M2 −→ M̂(z) = M̂1(z) + M̂2(z) if M1 ∩M2 = ∅
M = M1 ×M2 −→ M̂(z) = M̂1(z)M̂2(z)

M =

∞
⋃

k=1

Mk
1 −→ M̂(z) =

M̂1(z)

1− M̂1(z)

The EGF's behave for labeled objet in the same way as OGF's behave for

unlabeled objets.

4.5 Average Stack Height

Let us look at a larger, non-trivial example. Assume we have an algorithm

that solves a problem of size n reursively by a divide-and-onquer ap-

proah. If n = 1 it is solved diretly and otherwise the problem is split into

two parts of sizes m and n−m, where m,n−m > 0. The �rst subproblem

4.5. AVERAGE STACK HEIGHT 75

of size m is solved at one reursively and the other is pushed onto a stak

for later. After both subproblems are solved, the solutions an be ombined

into a solution of the original problem.

We are interested in the amount of memory used for the stak. To be

more preise: the average size of the stak over the running time of the

algorithm. A modern runtime system releases memory if the stak shrinks.

Furthermore, we assume that every reursive all struture possible ours

with the same probability. Suh a all struture orresponds to exatly one

reursive tree of alls, whih is a binary tree.

An inner node of this binary tree orresponds to a subproblem of size at

least two, while a leaf orresponds to a subproblem of size one. Hene, the

tree has n − 1 internal and n external nodes. The memory usage of the

stak used for the subproblem at a node is the distane to the root or the

path length of this node. The average stak usage is therefore

ξ(t) + π(t)

2n− 1
=

2π(t) + 2n

2n− 1

for a tree t with n internal nodes.

Therefore it is suÆient to answer this question: How big is π(t) on average

for all binary trees t with n internal nodes?

For this end we ompute

pn =
∑

t∈T
π(t)(|t| = n),

where T is the set of all binary trees. To get the average external path

length of all binary trees all we have to do is divide pn by the number of

binary trees. The latter number is already known to us. It is bn = 1
n+1

(

2n
n

)

.

Let us ompute pn. Let P(z) be the orresponding OGF

P(z) =

∞∑

n=0

pnz
n =
∑

t∈T
π(t)z|t|.

We will also need the number bn of binary trees of size n and the orre-

sponding OGF B(z):

B(z) =
1−

√
1− 4z

2z

76 CHAPTER 4. GENERATING FUNCTIONS

If t ∈ t1×t2, then π(t) = π(t1)+π(t2)+|t|−1. We split P(z) orrespondingly

into

P(z) =
∑

t=t1×t2∈T
π(t1)z

|t|+
∑

t=t1×t2∈T
π(t2)z

|t|+
∑

t=t1×t2∈T
|t|z|t|−

∑

t=t1×t2∈T
z|t| =

= A+ B+ C−D,

where

A =
∑

t=t1×t2∈T
π(t1)z

|t| B =
∑

t=t1×t2∈T
π(t2)z

|t|

C =
∑

t=t1×t2∈T
|t|z|t| D =

∑

t=t1×t2∈T
z|t|.

Let us have a loser look at A, B, C, and D. an. The easiest is by far D,

whih turns out to be nothing else but B(z) − 1.

A =
∑

t=t1×t2∈T
π(t1)z

|t| =
∑

t=t1×t2∈T
π(t1)z

|t1 |+|t2 |+1 =

= z
∑

t1∈T
π(t1)z

|t1 |
∑

t2∈T
z|t2 | = z

∑

t∈T
π(t)z|t|

∑

t∈T
z|t| = zP(z)B(z)

We an handle B in the same way. Beause of symmetry between t1 and

t2 we get A = B. The power series C looks like a �rst direvative and after

some small manipulations we see that it is losely related to B(z) ′.

C =
∑

t=t1×t2∈T
|t|z|t| = z

∑

t=t1×t2∈T
|t|z|t|−1 = z

(∑

t=t1×t2∈T
z|t|
) ′

= zB(z) ′.

Altogether the result is

P(z) = 1+ 2zP(z)B(z) + zB(z) ′ − B(z)

4.5. AVERAGE STACK HEIGHT 77

or, if we solve for P(z),

P(z) =
1− 1/z√
1− 4z

+
1/z− 3

1− 4z

=

(

1−
1

z

) ∞∑

n=0

(

−1/2

n

)

(−4)nzn +

(

1

z
− 3

) ∞∑

n=0

4nzn

=

(

1−
1

z

) ∞∑

n=0

(

2n

n

)

zn +

(

1

z
− 3

) ∞∑

n=0

4nzn

=

∞∑

n=0

(

2n

n

)

zn −

∞∑

n=0

(

2(n+ 1)

n+ 1

)

zn − 3

∞∑

n=0

4nzn +

∞∑

n=0

4n+1zn

=

∞∑

n=0

4nzn −

∞∑

n=0

3n+ 1

n+ 1

(

2n

n

)

zn

Exercises

4.1 Find the generating funtions of the following series:

1. an = 2n + 3n 2. bn = (n+ 1)2n+1
3. cn = αn

(

k
n

)

4. dn = (n− 1) 5. en = (n+ 1)2

4.2 Find the generating funtion for the series de�ned by the follwing reurrene:

fn = fn−1 + 2fn−2 + 3fn−3 + · · ·+ nf0 for n > 0 und f0 = 1.

4.3 Expand the following generating funtions into a power series. What is a

losed formula for their nth oeÆient?

1. A(z) = 3z

2. B(z) = 1/
√

1− z/2

3. C(z) = (1+ z)/(1− z)

4.4 Express

(

1/2
n

)

as an expression that ontains only integers in its binomial

oeÆients.

4.5 Answer the following question with the help of Lagrange inversion: How

many di�erent expressions an be generated in exatly n steps with the following

ontextfree grammar? (if, then, else, fi, true, and false are the terminal symbols)

S → if S then S else S fi |

if S then S fi |

true |

false

78 CHAPTER 4. GENERATING FUNCTIONS

4.6 Let us all a sequene of push- and pop-operations, in short ↑ and ↓, valid, if
it ontains the same number of ↑'s and ↓'s and no pre�x in the sequene ontains

less ↑'s than ↓'s. For example, (↑, ↑, ↓, ↓, ↑, ↓) is valid, (↑, ↓, ↑, ↑) and (↑, ↓, ↓, ↑) are
not valid. The number of ↑'s in a sequene is the length of the sequene.

What is the number of valid sequenes of length n?

4.7 A peak in a valid sequene (see the last exerise) is a pair of neighboring

elements (↑, ↓).
Find the bivariate generating funtion for the number of valid sequenes of length

n with exatly m peaks. Use the symboli method.

Hint: It might be a good idea to distinguish the ases exatly on peak and at

least two peaks at �rst.

4.8 What is the bivariate generating funtion for the number of binary trees with

n internal andm external nodes. Find an interesting fat about hanging the roles

of n and m.

4.9 Using the losed formula for pn ompute the average stak height. Use an

asymptoti estimate for

(

2n
n

)

with the help of Stirling's formula. Present your

result as preisely as possible.

Chapter 5

Asymptotic Estimations

Often, an approximative solution is suÆient, whih is only asympotially

valid, if it di�ers only a little from the real solution. Sometimes it is not

possible at all to get the exat solution in a losed form and sometimes, even

though it might be possible, but the resulting formula is very ompliated.

A formula being only asymptoially valid, but simpler, an be more useful.

An example for this ase was the median intern path length of a binary tree

with n intern nodes. The exat and asymptoti solution that we worked

out were

4n −
3n+ 1

n+ 1

(

2n

n

)

= n
√
πn− 3n+O(

√
n).

At last, there is a third possibility: Sometimes, one an ompute a good

approximation with little e�ort but only �nd out the exat solution with

very high e�ort. If the approximative solution is suÆient, then it is not

worth the e�ort.

In addition to O-notation we also use the symbols ∼ and ≍. The de�nition
of ≍ omes later, and ∼ is used in two ways.

We write

f(n) ∼ g(n) ⇐⇒ f(n) = g(n) + o(g(n)).

For example, ln(n + 1/n) ∼ ln(n) for n → ∞, where we an leave out the

latter part if it is known from the ontext. A further example is ex ∼ 1+ x

for x→ 0.

The seond possibility to use ∼ are asymptoti expansions. In this ase,

the right side of the relation is a series.

79

80 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

Figure 5.1: Approximating a sum by an integral.

We write

f(n) ∼

∞∑

k=0

gk(n) ⇐⇒ f(n) ∼

m∑

k=0

gk(n) for all m ∈ N. (5.1)

An asymptoti expansion o�ers a whole sequene of approximations to f(n)

getting more and more preise.

The easiest way to get to asymptoti expansions is to expand it into a

power series. In these ases, we an even use the symbol = instead of ∼. In

general, however, we annot replae ∼ by = in an asymptoti expansion.

5.1 Euler’s summation formula

Euler's summation formula is based on replaing a sum by an integral.

Theorem 7. (Euler’s summation formula)

If

∫n
1
|f(i)(x)|dx exists for 1 ≤ i ≤ 2m, then

n∑

k=1

f(k) =

∫n

1

f(x)dx +
1

2
f(n) + C+

m∑

k=1

B2k

(2k)!
f(2k−1)(n) + Rm,

where Rm = O
(∫n

1
|f(2m)(x)|dx

)

and Bk = n![zn]z/(ez−1) are the Bernoulli-

numbers:

n 0 1 2 3 4 5 6

Bn 1 − 1
2

1
6

0 − 1
30

0 1
42

If f(i) = o(f(i+1)) holds for all i, then Euler's summation formula gives us

an asymptoti expansion. We present two examples.

The harmoni numbers are de�ned by the sum

Hn =
∑

k=1

1

k
.

5.1. EULER'S SUMMATION FORMULA 81

n! =
√
2πn

(n

e

)n
(

1+
1

12n
+

1

288n2
+O(n−3)

)

(Stirling's formula)

Hn = lnn+ γ+
1

2n
−

1

12n2
+O(n−4) (Harmoni numbers),

with γ ≈ 0.57721566490153286060651209

Table 5.1: Some important asymptoti approximations

So we set f(x) = 1/x and must now ompute the i-th derivative of f(x). In

this ase this is very simple and we get

f(i)(x) = i!(−1)ix−1−i.

The onditions of Euler's summation formula are ful�lled and we get

n∑

k=1

1

k
∼

∫n

1

dx

x
+

1

2n
+ C+

m∑

k=1

B2k

(2k)!

−(2k− 1)!

n−2k

∼ lnn+ γ+
1

2n
−

1

12n2
+ · · ·

The unknown onstant is alled γ and annot be represented in an easy

way by other known mathematial onstants.

As the next example we hoose n!. Sine n! is de�ned by the use of a

produt instead of a sum, we apply Euler's summation formula to ln(n!)

instead.

ln(n!) =

n∑

k=1

ln(k) ∼

∫n

1

ln(x)dx +
1

2
lnn+ lnσ+

∞∑

k=!

B2k

(2k)!

(2k− 2)!

n2k−1

∼ (n+
1

2
) lnn− n+ lnσ+

1

12n
−

1

360n3
+ · · ·

From this we obtain the approximation for n!. It turns out that σ =
√
2π.

n! ∼
√
2πn

(n

e

)n
(

1+
1

12n
+

1

288n2
−

139

51840n3
+ · · ·

)

82 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

5.2 Singularity Analysis

Euler's summation formula was an appliation of alulus of real numbers.

The methods of the real alulus are, however, too limited. Now we turn

the omplex alulus. In the following we are interested primarily in ap-

proximations of the oeÆients of an OGF or EGF.

Our �rst theorem will be the easiest to use but also deliver the most inexat

approximations Firstly, we deal only with the exponential growth of these

oeÆients.

To this end, we de�ne for a sequene an and a positive real number K

an ≍ Kn ⇐⇒ lim sup

n→∞

|an|
1/n = K.

We an also de�ne an ≍ Kn
as follows: For eah ǫ > 0, no matter how

small, |an| > (K−ǫ)n holds for in�nitely many n, and |an| < (K+ǫ)n holds

for all n expet �nitely many exeptions.

We an also say that an = ϑ(n)Kn
for all n, where ϑ(n) is a subexponential

funtion (whih grows slower than any exponential funtion).

A funtion f is analyti in z0 if f(z) =
∑

∞

n=0 fn(z− z0)
n
in a neighborhood

of z0. Here, z0 is some omplex number and the neighborhood lies in the

omplex plane.

The funtion z 7→ 1/z is analyti in the entire plane expet in the origin.

A point in whih a funtion stops being analytial is alled a singularity

of this funtion. The funtion z 7→ 1/z therefore has the singularity 0.

We all a singularity dominant if it is a singularity with a minimal absolute

value. A theorem going bak to Pringsheim is often helpful for us. It

says that the dominant singularity of a power series with non-negative

oeÆients always is a positive real number. This helps us to �nd the

dominant singularity quikly.

Theorem 8. The dominant singularities of a GF f(z) determine their ex-

ponential growth: Let f(z) be a GF and z0 be a dominant singularity with

R = |z0|. Then

[zn]f(z) ≍
(

1

R

)n

.

5.3. MEROMORPHIC FUNCTIONS 83

Figure 5.2: The absolute value of the funtion S(z) = 1/(2 − ez). The

dominant singularity at ln 2 an be seen in the middle. Next to it are the

next two singularities at ln 2± 2πi.

Let us look at the EGF S(z) and the OGF U(z) as examples, represented

as

S(z) =
1

2− ez
and U(z) =

1− z−
√

(1 − 3z)(1+ z)

2z

in losed form. The funtion S(z) has singularities for all z with ez = 2,

whih means z = ln(2) + 2kπi for all k ∈ Z. The dominant singularity is

ln 2 and we get

n![zn]S(z) ≍ n!

(

1

ln 2

)n

.

In U(z) we �nd the singularities at eah z, for whih the expression under

the root beomes 0; these are

1
3
and −1. At 0, U(z) has no singularity,

beause limz→0 U(z) = 1
2
. The dominant singularity is

1
3
and therefore

[zn]U(z) ≍ 3n.

5.3 Meromorphic functions

The exponential growth an be easily determined for arbitrary GFs. The

next formula gives us a more preise approximation. It works, however,

84 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

only for a sublass of all funtions | for the meromorphi funtions that

we de�ne now.

A funtion f(z) is meromorphi in z0, if there are funtions g(z) and h(z),

suh that

f(z) =
g(z)

h(z)

for z ∈ U − {z0}, where U is a neighborhood of z0 (of ourse, h = 0 is not

allowed) and g(z) and h(z) are analyti in z0.

It is easy to see that f(z) is meromorphi in z0 i� there is a series expansion

of the form

f(z) =

∞∑

n=−k

an(z− z0)
n =

=
a−k

(z− z0)k
+

a−(k−1)

(z− z0)k−1
+ · · · + a−1

z− z0
+

∞∑

n=0

an(z− z0)
n =

P(z)

(z− z0)k
+

∞∑

n=0

an(z− z0)
n =

in a neighborhood of z0. Here k is some positive integer and we an assume

that a−k 6= 0. The polynomial P(z) is

P(z) =

k−1∑

n=0

an−k(z− z0)
n.

We all this the Laurent series of f(z) in z0.

We say that f(z) has a pole of order r in z0 if f(z)(z0 − z)r is analyti in

z0, but f(z) is not. In the Laurent series above f(z) has a pole of order k

in z0. A funtion f is meromorphi in a domain U if f is meromorphi in

every z0 ∈ U. It should be obvious by now that

f(z) −

−1∑

n=−k

an(z− z0)
n = f(z) −

P(z)

(z− z0)k

has no pole in z0 (in fat it does not have a singularity in z9). If f is mero-

morphi in a domain U we an in priniple \anel" all poles by adding

a simple funtions. What remains is an analyti funtion in U. In that

5.3. MEROMORPHIC FUNCTIONS 85

ase the oeÆients [zn]f(z) depend mainly on the behavior of the sim-

ple funtions that aneled the poles beause the remaining funtion has

asymptotially small oeÆients (its exponential growth is zero!). We an

use this fat in the following theorem:

Theorem 9. Let f(z) be meromorphi for |z| ≤ R. Inside this irle let f(z)

have poles α1, α2, . . . , αm. Moreover, let f(z) be analyti in the origin and

in z with |z| = R. Then there are polynomials P1(z), . . . , Pm(z) suh that

[zn]f(z) =

m∑

j=1

Pj(n)α
−n
j +O(R−n).

The degree of Pj(z) is one less than the order of the pole αj.

We an easily �nd out how these polynomials look like. Let us look again

at S(z) = 1/(2 − ez) as an example. If we hoose R = 6, then there is only

one singularity at ln 2 inside the irle |z| = R. The pole ln 2 has order 1.

Let us see how S(z) behaves asymptotially for z→ ln 2.

We have ez ∼ 2− 2 ln(2) + 2z for z→ ln 2 and therefore

1

2− ez
∼
1

2

1

ln 2− z
=

1

2 ln 2

1

1− (1/ ln 2)z
=

1

2 ln 2

∞∑

n=0

(

1

ln 2

)n

zn.

The polynomial P1(z) is 1/(2 ln 2). In general you speify all Pi(z) in this

way.

The solution to our andidate problem is

[zn]S(z) =
1

2

(

1

ln 2

)n+1

+O(6−n).

Let us look at another example demonstrating that we an arrive at a very

good approximation with relative easy, while it seems to be impossible hard

to get an exat solution.

A well known example from probability are the seamen who hoose their

hammoks randomly. In this story there are n seamen who return drunk

to their ship from shore leave. They hoose a random hammok and go

to sleep. It is easy to see that the expeted number of seamen who sleep

in their own hammoks is exatly 1 beause for eah one the probability

86 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

is 1/n. How big, however, is the probability that no seaman sleeps in his

own hammok?

We all a permutation without a �xpoint a derangement. The seaman

probability is losely related to the problem of ounting the number Dn of

derangements of set of size n. Sine a permutation is not an derangements

if it ontains between one and n �xpoints and there are exatly

(

n
k

)

Dn−k

permutations with exatly k �xpoints, we an easily �nd a reurrene for

Dn:

Dn = n! −

n∑

k=1

(

n

k

)

Dn−k

We rewrite it into this simpler form:

n! =

n∑

k=0

(

n

k

)

Dk

Being marked objets we opt for using an EGF to solve this equation. The

right hand side looks like a binomial sum and we get

1

1− z
= ezD(z),

whih gives us a losed form for the EGF for Dn:

D(z) =
e−z

1− z

We an read o� interesting properties right away. First, there is only one

singularity at 1. Hene, n![zn]D(z) ≍ n! and Dn ≍ n! or, stated in a

di�erent way, the fator between Dn and n! is subexponential. This might

be a surprise to you beause it implies that relatively many permutations

must be derangements. The probability that all seamen sleep in other's

hammoks must be quite high.

But how high is the probability exatly? Let us proeed in our analysis.

The funtion e−z
is analyti in the whole omplex plane and has its sole

singularity in ∞. Suh a funtion is also alled an entire funtion. This

means that D(z) is meromorphi and has a pole of �rst order at 1. This

means that we an write

n![zn]D(z) = P1(n)α
n
1 +O(R−n) = C · 1n +O(R−n)

5.3. MEROMORPHIC FUNCTIONS 87

allowing us to hoose R arbitrarily big. The onstant C is the polynomial

of zeroth order and we an establish the value of C by estimating D(z) for

z→ 1:
e−z

1− z
∼
1

e

∞∑

n=0

zn for z→ 1

The �nal result turns out to be

Dn =
n!

e
+O(n! ǫn)

for every ǫ > 0. The error term approahes zero very fast and we an

expet that the approximation is good even for relatively small n. There

is, however, no guarantee for that. This hidden onstant in the O-notation

ould be giganti and as it depends on ǫ there is always a tradeo�: If we

hoose a very small ǫ the onstant will be big.

Table 5.2 shows that the approximation is quite exellent.

Let us look at another example, the generating funtion

L(z) =

∞∑

n=0

Lnz
n =

z(1− z)

ez−1 − z
,

where Ln is the length of the nth run of a random series of numbers (hosen,

say, from the unit interval). It is easy to see that L1 = 1+ 1
2
+ 1

3!
+ 1

4!
+ · · · =

e− 1.

Where are the singularities of L(z)? We �nd the dominant singularity at

z0 = 1 on the positive real axis and the next two singularities form a

onjugate omplex pair z1 and �z1 in the right upper and lower quadrant.

As we are looking for a z with ez−1 = z we have simultaneously to ful�l the

equations ex−1
osy = x and ex−1

siny = y for the real and imaginary part.

Figure 5.3 shows the sheaf of singularities. We establish the order of the

pole at z0 = 1: It turns out that

lim

z→1

1− z

ez−1 − z
= lim

z→1

−1

ez−1 − 1

does not exist, but

lim

z→1

1− z

ez−1 − z
(z− 1) = lim

z→1

z2 − 2z+ 1

z− ez−1
= lim

z→1

2z− 2

1− ez−1
= lim

z→1

2

−ez−1
= −2

88 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

n Dn n! n!/Dn

2 1 2 2.000000000000000

3 2 6 3.000000000000000

4 9 24 2.666666666666667

5 44 120 2.727272727272727

6 265 720 2.716981132075472

7 1 854 5 040 2.718446601941748

8 14 833 40 320 2.718263331760264

9 133 496 362 880 2.718283693893450

10 1 334 961 3 628 800 2.718281657666404

11 14 684 570 39 916 800 2.718281842777827

12 176 214 841 479 001 600 2.718281827351874

13 2 290 792 932 6 227 020 800 2.718281828538486

14 32 071 101 049 87 178 291 200 2.718281828453728

15 481 066 515 734 1 307 674 368 000 2.718281828459379

16 7 697 064 251 745 20 922 789 888 000 2.718281828459026

17 130 850 092 279 664 355 687 428 096 000 2.718281828459046

18 2 355 301 661 033 953 6 402 373 705 728 000 2.718281828459045

19 44 750 731 559 645 106 121 645 100 408 832 000 2.718281828459045

Table 5.2: n!/e is a very good approximation for Dn. The exat value of e

to 15 deimal digits is 2.718281828459045.

5.4. ALGEBRAIC SINGULARITIES 89

Figure 5.3: The absolute value of z(1−z)/(ez−1−z). In the middle you �nd

the sole zero at z = 0. Next to it lies the dominant singularity at z = 1,

surrounded by a sheaf of onjugated omplex singularities.

does. Therefore z0 = 1 is a �rst order pole.

Furthermore, L(z) + 2/(z− 1) has no singularity at z = 1 and the next sin-

gularities are far away: They are |z1| = |�z1| = 8.07556 . . . > 8 and therefore

[zn]L(z) = Ln = [zn]
−2

z− 1
+O(8−n) = 2+O(8−n).

The series Ln onverges quikly towards 2.

5.4 Algebraic Singularities

A funtion f(z) has an algebrai singularity at z0 if we an write f(z) as

f(z) = h(z) +

m∑

j=1

(

1−
z

z0

)cj

gj(z),

where h(z) and gj(z) are analyti z0 and cj 6= {0, 1, 2, . . .}.

Poles are speial algebrai singularities.

Unfortunately we annot �nd as good approximations for the ase of al-

gebrai singularities as for poles. We will be ontent with the following

90 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

Figure 5.4: The Gamma funtion.

theorem by Darboux, whih allows us to �nd asymptoti estimates with-

out too muh work.

Theorem 10. Let f(z) be analyti for |z| < R and let all singularities on

|z| = R be algebrai ones. Let

f(z) = h(z) +

k∑

j=1

(1− z/αj)
cj gj(z),

where h(z) and all gj(z) are analyti on |z| ≤ R and let αj be the singularities

on |z| = R. Moreover cj /∈ {0, 1, 2, . . .}.

We de�ne a = min{ℜ(cj) | 1 ≤ j ≤ k }. Then

[zn]f(z) =
∑

j

gj(αj)n
−cj−1

Γ(−cj)α
n
j

+ o(R−nn−a−1),

where the sum is taken over all j with ℜ(cj) = a.

The rough idea behind Darboux's method is the same as for our treatment

of poles: If G(z) has an algebrai singularity α then we �nd a funtion

H(z) that has a similar algebrai singularity, but is easily expanded into a

power series. If we hoose H(z) wisely, then [zn]G(z) ∼ [zn]H(z) beause

[zn](G(z) − H(z)) grows asymptotially slower. Unfortunately, we annot

make the algebrai singularity appear ompletely in this way as was the

ase for poles.

For the purpose of illustration we onsider

G(z) =
√

(1− z)(1 − αz)

with α < 1. The singularities ofG(z) are 1 and 1/α, where 1 is the dominant

one. The singularity 1 is algebrai beause G(z) = (1− z)1/2R(z) with R(z)

being analyti in 1. We are now looking for a omparison funtion H(z)

suh that [zn](G(z)−H(z)) is small making [zn]H(z) a good approximation

of [zn]G(z). For this end H(z) should have an algebrai singularity at 1 and

5.4. ALGEBRAIC SINGULARITIES 91

behave identially to G(z) near 1. Using a Taylor approximation for R(z)

at z = 1 we �nd a nie funtion that is asymptotially idential to G(z) for

z→ 1:

G(z) ∼ (z− 1)1/2
√
α− 1+ (z− 1)3/2

α
√

(α− 1)

2(α− 1)
− (z− 1)5/2

α2
√

(α− 1)

8(α− 1)2

We hoose H(z) = (1 − z)1/2
√
1− α and look at G(z) − H(z) = (1 −

z)1/2(
√
1− αz −

√
1− α). The seond fator

√
1− αz −

√
1− α has no

singularity at 1. On the ontrary:

√
1− αz −

√
1− α ∼ 0 for z → 1. That

is exatly what we expeted and even

√
1− αz−

√
1− α

1− z

has no singularity at 1. Therefore we are able to write G(z) −H(z) as

G(z) −H(z) = (1 − z)3/2
√
1− αz−

√
1− α

1− z
.

Just like G(z) the funtion G(z) −H(z) has still an algebrai singularity at

1, but its order dropped from 1/2 to 3/2. We will see that the oeÆients of

G(z) −H(z) are asymptotially muh smaller than the oeÆients of G(z).

In that way [zn]H(z) beomes a good approximation of [zn]G(z).

To estimate [zn](G(z)−H(z)) we write G(z)−H(z) = A(z)B(z) with A(z) =

(1−z)3/2 and B(z) = (
√
1− αz−

√
1− α)/(1−z). The dominant singularity

of B(z) is 1/α and therefore [zn]B(z) ≍ α−n
or [zn] = O(r−n) for some r > 1

(and r < 1/α).

The oeÆients for A(z)B(z) an be expressed as a onvolution:

[zn](A(z)B(z)) =

n∑

k=0

akbn−k

At the beginning of the sum the ak's are relatively big and towards the

end the bn−k's. This suggests splitting the sum into two parts. For bn we

already have the good bound bn = O(r−n) and we an get a good bound

for an by expanding A(z) aording to Newton's formula:

an =

(

3/2

n

)

(−1)n =

(

n− 5/2

n

)

= O(n−5/2)

92 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

This enables us to estimate the partial sum generously:

⌈n/2⌉∑

k=0

akbn−k = O(r−n/2)

n∑

⌊n/2⌋
akbn−k = O(n−5/2)

Altogether we get [zn](G(z) −H(z)) = O(r−n/2) +O(n−5/2) = O(n−5/2) and

therefore [zn]G(z) = [zn]H(z)+O(n−5/2). Beause we an expand H(z) into

a power series we get the following result:

[zn]G(z) =
√
1− α

(

1/2

n

)

(−1)n +O(n−5/2) = −
√
1− α

n−3/2

Γ(−1/2)
+O(n−5/2)

Let n = 50 and α = 1/2. The exat value of [zn]G(z) is then

−
99827864011764212779295458819104396304431

178405961588244985132285746181186892047843328
= −5.595545 . . .×10−4

and

√

1− 1/2(−1)50
(

1/2

50

)

= −5.684655 . . .× 10−4.

5.5 The Saddle Point Method

The last subsetion is dediated to generating funtion that have no sin-

gularities. We have not seen any method to handle suh funtions and to

extrat their oeÆient, yet.

We will get help from the famous redidue theorem of omplex alulus.

From this theorem the following follows easily:

gn =
1

2πi

∫

Γ

G(z)

zn+1
dz,

where Γ is a losed smoothed urve that travels around the origin ounter

lokwise exatly one.

5.5. THE SADDLE POINT METHOD 93

Why is this theorem orret? We will not prove it here, but let us look at

a irle around the origin:

∫

C

1

zn+1
=

∫ 2π

0

e−(n+1)φideφi =

∫ 2π

0

e−(n+1)φiieφidφ =

i

∫ 2π

0

enφidφ =

{
2πi falls n = 0

1
n
enφi

∣

∣

2π

φ=0
= 0 sonst

As it turns out, only for n = 0 we get a value that is not zero.

Beause the value of this ontour integral does not depend on whih urve

we hoose (something we do not prove here) and the linearity of integration

the above theorem follows.

Usually these kind of theorems are used to ompute integrals, but we are

using the method bakwards: We estimate the integral and get an approx-

imation for the oeÆients of a GF.

To ompute suh an integral approximately, we will use a heuristi that

gives the method its name. We are free to hoose what urve we use in the

integration and it turns out that some urves are better for us than others.

Ideally, the integrand is almost zero on almost the whole urve and is big

only on a tiny part. Then essentially we have to approximate an integral

on a very short urve, whih is relatively easy.

If that is indeed possible then we an split the urve into two parts. For

one part we show that the ontribution to the integral is very small. For

the seond part we have to ompute the value with only a small error.

Beause the urve is very short, this is possible by replaing the integrand

by a simpler funtion whose shape is almost the same on this short urve.

A Taylor approximation, for example, an do the trik.

There is a good heuristi to �nd suh a urve: We are taking an entire

funtion (with no singularities) and dividing it by zn+1
. Hene, there is

only a single singularity in the origin (and one in ∞). As the absolute

value of a funtion that is analyti in a domain D annot have a maximal

value in D there must be a saddle point between the singularities 0 and

∞. If your are at a saddle point the funtion will derease in two opposite

diretion usually quite steeply. So it is usually a good idea to hoose a

urve that uses this steep slope to get on top of the saddle and then down

94 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

Figure 5.5: The absolute value of ez/zn+1
for n = 5.

on the other side. In this way we an hope that the funtion is small if you

are far from the saddle point. Of ourse, we have to take are what the

exat shape of the remaining urve is beause we have to lose it somehow.

We try to do this in a way that the urve stays lose to zero all the time.

Let us illustrate the method on the example of G(z) = ez beause this OGF

is relatively simple and we already know the result gn = 1/n!. This enables

us to see easily how big the error of our approximation is.

If we look at the funtion ez/zn+1
we �nd a saddle point at n + 1. It is

suÆient to set the derivative to zero.

Figure 5.5 depits the absolute value of this funtion in the omplex plane.

You an see the saddle quite prominently.

For our alulation it is better to go through n instead of n + 1 (whih is

still very lose to the saddle point). We will just use a irle with radius n

as our ontour.

1

2πi

∫

C

ez

zn+1
dz =

1

2πi

∫ 2π

0

ene
iφ

nn+1e(n+1)iφ
dneiφ =

=
1

2π

∫ 2π

0

ene
iφ

nn+1e(n+1)iφ
neiφdφ =

1

2π

∫ 2π

0

ene
iφ

nneniφ
dφ =

1

2π

A+ B

nn

with

A =

∫ δ

−δ

ene
iφ

eniφ
dφ and B =

∫ 2π−δ

δ

ene
iφ

eniφ
dφ

5.5. THE SADDLE POINT METHOD 95

Choosing delta in a lever should make A the dominant part of the integral

and B asymptotially negletable, i.e., B = o(A) and therefore A + B ∼ A.

We will analyse both A and B and we start with A:

A =

∫ δ

−δ

ene
iφ−niφdφ

For the exponent we get:

neiφ − niφ ∼ n(1 −
φ2

2
+O(φ3))

and therefore

A =

∫ δ

−δ

en(1−δ2/2+O(φ3))dφ = en
∫ δ

−δ

e−nφ2/2(1+O(nφ3))dφ =

= en(1+O(nδ3))

∫ δ

−δ

e−nφ2/2dφ

To make sure that the approximation is good we need nφ3 = o(1) and thus

δ = o(n−1/3). To ompute the integral we substitute φ = t
√

2/n and get:

∫ δ

−δ

e−nφ2/2dφ =

∫ δ√n/2

−δ
√

n/2

e−t2dt
√

2/n =

√

2

n

∫ δ√n/2

−δ
√

n/2

e−t2dt

There is no losed solution for that integral, but the improper integral∫
∞

−∞
e−t2dt =

√
π is well known.

√

2

n

∫ δ√n/2

−δ
√

n/2

e−t2dt =

√

2

n

∫
∞

−∞

e−t2dt− 2

√

2

n

∫
∞

δ
√

n/2

e−t2dt =

=

√

2π

n
+O

(

n−1/2

∫
∞

δ
√

n/2

e−tdt

)

=

√

2π

n
+O(n−1/2e−δ

√
n/2) ∼

√

2π

n

This approximation is only true if δ
√

n/2 = ω(1) sine only then we an

replae e−t2
by e−t

. We have to hoose δ in a way suh that δ = ω(n−1/2)

and get A ∼
√

2π/nen.

Finally, we an turn our attention to B:

|B| =

∣

∣

∣

∣

∣

∫ 2π−δ

δ

ene
iφ−niφdφ

∣

∣

∣

∣

∣

≤
∫ 2π−δ

δ

∣

∣

∣
ene

iφ−niφ
∣

∣

∣
dφ =

=

∫ 2π−δ

δ

en osφdφ ≤ 2πen os δ ≤ 2πen · e−nδ2/2 = eo(n)

96 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

if nδ2 = ω(1) or δ = ω(n−1/2). We an hoose δ = n−5/12
in order to

ful�ll all onditions for δ. We get �nally: A + B ∼

√

2π
n
en and therefore

1
2πi

∫
C

ez

zn+1dz = 1
2π

A+B
nn ∼ 1

2πn
en

nn .

This yields an approximate formula n! ∼
√
2πnnn

en
for the fatorial funtion.

Euler's summation formula is more preise, but fails to identify Stirling's

onstant as σ =
√
2π.

A real example for the saddle point method is the generating funtion

I(z) = ez+z2/2
for the number of involutions { permutations π where π2

is

the identity. To �nd the saddle point we see where the derivative is zero:

(

I(z)

zn+1

) ′
=

(z+ 1)ez+z2/2

zn+1
− (n+ 1)

ez+z2/2

zn+2

It is zero when z(z+ 1) = n+ 1, whih means that the saddle point is near√
n. We hoose as the ontour again a irle and leave its radius R for the

moment unspei�ed.

[zn]I(z) =
1

2πi

∫

c

ez+z2/2

zn+1
dz =

1

2πi

∫ 2π

0

eRe
iφ+R2e2iφ/2

Rn+1ei(n+1)φ
dReiφ =

=
1

2πRn

∫ 2π

0

eRe
iφ+R2e2iφ/2−inφdφ =

1

2πRn
(A+ B)

where

A =

∫ δ

−δ

eRe
iφ+R2e2iφ/2−inφdφ

and

B =

∫ 2π−δ

δ

eRe
iφ+R2e2iφ/2−inφdφ.

Let us onsider A �rst:

eRe
iφ+R2e2iφ/2−inφ = eR(1+iφ−φ2/2+O(φ3))+R2(1

2
+iφ−φ2+O(φ3))−inφ =

= eR+R2/2 · e−φ2(R/2+R2)+iφ(R+R2−n)+(R+R2)O(φ3)

We hoose R2 + R = n, beause then the fator in front of iφ vanishes.

5.5. THE SADDLE POINT METHOD 97

Figure 5.6: The absolute value of ez+z2/2/zn+1
for n = 5. Two possible

ontours are depited. The outer irle passes exatly through the saddle

point (at R(R+ 1) = n+ 1), while the inner irle uses R(R+ 1) = n, whih

will be a nier identity in the alulation that follows. You an learly see

the singularity in the origin. Along the real axis the funtion eventually

grows exponentially.

Then R = 1
2

√
4n+ 1− 1

2
and we get

A = eR+R2/2

∫ δ

−δ

e−φ2(n+O(
√
n))+O(φ3)dφ =

= eR+R2/2

∫ δ

−δ

e−φ2n
(

1+O(φ2
√
n))(1 +O(nφ3)

)

dφ =

= eR+R2/2
(

1+O(δ2
√
n) +O(δ3n)

)

∫ δ

−δ

e−φ2ndφ

We need the properties δ2
√
n = o(1) and δ3n = o(1) in order to get a

good approximation for A. This means that δ = o(n−1/3) and δ = o(n−1/4),

where the �rst ondition is the stronger one.

Finally we an turn our attention to the remaining integral. We substitute

98 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

t = φ/
√
n.

∫ δ

−δ

e−φ2ndφ =

∫ δ√n

−δ
√
n

e−t2d
t√
n

=
1√
n

(∫−∞

∞

e−t2 dt− 2

∫
∞

δ
√
n

e−t2 dt

)

=

=
1√
n

(√
π+ o(1)

)

This yields

∫
∞

δ
√
n
dt = o(1) if δ

√
n = ω(1), or if δ = ω(n−1/2). We need

δ = o(n−1/3) and δ = ω(n−1/2) at the same time, so we hoose δ = n−5/12
,

whih lies in between. Altogether we get

A = eR+R2/2

√

π

n
(1+ o(1))

and we an turn to B:

B =

∫ 2π−δ

δ

eRe
iφ+R2e2iφ/2−inφdφ

We would like to show that B is small. For this end it is suÆient to look

at the absolute value of the integrand:

eR osφ+R2
os(2φ)/2

For |eRe
iφ+R2e2iφ/2−inφ| = o(eR+R2/2) it is suÆient if one of the following

onditions is ful�lled:

1. 1− osφ = ω(1/
√
n)

2. 1− os 2φ = ω(1/n)

We have to show that for every φ with δ ≤ φ ≤ 2π − δ at least one of

the two onditions holds. For this end we hek when the onditions are

violated:

1. φ = O
(

1/
√
n
)

or φ = 2π+O
(

1/
√
n
)

2. φ = O (1/n) or φ = π+O (1/n) or φ = 2π+O (1/n)

5.6. THE RESTRICTED SADDLE POINT METHOD 99

Both onditions together leave only the possibility φ = O (1/n) and φ =

2π+O (1/n). Beause of n
−5
12 ≤ φ ≤ 2π−n

−5
12

these annot be true either.

Altogether we get

A+ B ∼

√

π

n
eR+R2/2,

whih an be simpli�ed:

R+
R2

2
= n−

R2

2
= n−

1

8

(
√
4n+ 1− 1

)2
=

= n−
1

8

(

4n+ 1− 2
√
4n+ 1+ 1

)

=
n

2
−

1

4
+

√
n

2
+O(1/n)

and therefore

A+ B ∼

√

π

n
en/2+

√
n/2−1/4

we get

[zn]I(z) =
1

2πRn
(A+ B) ∼

en/2+
√
n/2−1/4

2
√
πnRn

Finally we simplify Rn
:

Rn = en ln(1
2

√
4n+1− 1

2
) = en(ln

1
2
+ln(

√
4n(1−1/

√
4n+O(1/n)))) =

= 2−n
√
4n

n
en(−1/

√
4n+O(1/n)) ∼ nn/2e−

√
n/2

The �nal result is

[zn]I(z) ∼
en/2+

√
n/2−1/4

2
√
πnRn

∼
en/2+

√
n/2−1/4

2
√
πnnn/2e−

√
n/2

=
en/2+

√
n−1/4

2
√
πn · nn/2

and

In = n![zn]I(z) ∼
√
2πn

nn

en
en/2+

√
n−1/4

2
√
πn · nn/2

=
nn/2e

√
n−1/4

√
2 en/2

If we let n = 50, then In/n! is 9.17×10−31
and our estimate is 8.82×10−31

.

5.6 The Restricted Saddle Point Method

To go through the whole proess of the saddle point method is usually

possible without problems, but an be very long. With less e�ort we an get

an upper bound that is in general worse, but often suÆiently good. The

100 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

idea of this simpli�ed method is simple: We replae a ompliated integral,

whih runs along a irle and the funtion is most of the time small, but

larger in ertain areas, by a simple integral of a onstant funtion on the

same ontour. If the onstant is bigger than the maximal absolute value

of the integrand along the ontour, it is lear that the upper bound of the

absolute value times the length of the ontour is an upper bound to the

value of the original integral.

Figure 5.7 illustrates the idea. Ideally the maximum absolute funtion

value ours exatly in the saddle point. The seond part of the following

theorem is based on suÆient onditions guaranteeing exatly this, while

the �rst part is universally true.

Theorem 11. Let f(z) be analyti in the origin, the oeÆients [zn]f(z)

are non-negative, and let R be the radius of onvergene of the power series

for f. Furthermore, we assume that f(0) 6= 0 and there are in�nitely many

n with [zn]f(z) 6= 0.

1. [zn]f(z) ≤ inf

0<r<R
f(r)/rn.

2. If limr→R− f(r) = +∞, then the equation ζf ′(ζ) = nf(ζ) has a unique

solution ζ(n) in (0, R) and [zn] ≤ f(ζ(n)) ζ(n)−n
.

Proof. The �rst part tells us essentially that we �nd the maximum of

|f(z)/zn| on the irle on the real axis. We assumed that ann oeÆients

are non-negative and therefore

max

|z|=r
|f(z)| ≤ max

|z|=r

∞∑

n=0

fn |z
n| = f(r).

We an perform the following alulation:

fn ≤
∣

∣

∣

∣

1

2πi

∫

|z|=r

f(z)

zn+1
dz

∣

∣

∣

∣

≤ 1

rn
max

|z|=r
|f(z)| =

f(r)

rn

For the seond part we have to show that f(r)/rn has a minimum at ζ(n)

and that that this minimum is unique. If r → 0+ or r → R−, then

f(r)/rn → +∞. Therefore, there must exist at least one minimum in

5.6. THE RESTRICTED SADDLE POINT METHOD 101

Figure 5.7: Das Integral �uber eine konstante Funktion, ist eine obere

Shranke f�ur das tats�ahlihe Kurvenintegral.

(0, R). This minimum must be unique if the funtion is onave in the

whole interval. If we look at the seond derivative

r2f ′′(r) − 2nrf ′(r) + n(n+ 1)f(r)

rn+2
=

1

rn+2

∞∑

m=0

(n + 1−m)(n −m)fmr
m,

we an easily see that it is positive in r ∈ (0, R): Both fm and (n + 1 −

m)(n −m) are non-negative and for in�nitely many m they are positive.

Finally it is evident that this unique minimum must be at ζ(n) beause

this is the only plae where the seond derivative of f(r)/rn vanishes.

Exercises

5.1 Sort the three sequenes with these EGFs by their asymptoti growth: A(z) =

1/
√

1− z/2, B(z) = (1+ z)/(1− z) and C(z) = 1
1−e−z−1/3 .

5.2 What is the exponential growth of the sequene with this generating funtion:

z3 − 11z2 + 39z− 45

z5 − 4z4 − 24z3 + 160z2 − 304z+ 192

5.3 You are a gardener and always looking for a bargain. As you know, the

normal prie for ordered rooted trees is 3 euros per internal node and 1 euro per

leaf. Now the loal plant nursery makes you the following o�er: All trees that

102 CHAPTER 5. ASYMPTOTIC ESTIMATIONS

normally ost n euros a piee for only 2n euros altogether! As a olletor you

are mostly interested in exlusive and therefore expensive trees. Fortunately, you

remember the generating funtion for the number of trees with m internal and n

extern nodes:

T(u, z) = −

√

z2 + (−2u− 2) z+ u2 − 2u+ 1+ z− u− 1

2

Is it a good o�er?

5.4 Determine [zn] 1
2−ez up to an error of O(12−n).

5.5 How expensive an single trees be at least so that the o�er from the last

exerise pays o�? Use Maxima.

5.6 Express Dn as a formula that ontains Strirling-numbers.

5.7 Find a better approximation for Ln than 2 + O(8−n) by using the next two

singularities.

5.8 Approximate 1/n! by the saddle point method hoosing a retangular ontour

integral.

