
RWTH Aachen
Lehrgebiet Theoretische Informatik
Reidl—Rossmanith—Sanchez—Sikdar

SS 2014
Tutorial 10
30.06.2014

Analysis of Algorithms

This tutorial is geared towards using generating functions for various counting problems.

Problem 10-1

Here is a classical problem: n gentlemen attend a party and check their hats. The checker
has a little too much drink and returns the hats at random. What is the probability that
no gentlemen receives his own hat? How does the probability depend on the number of
gentlemen?

Solution

Let the n gentlemen be labeled 1, 2, . . . , n. A permutation of {1, . . . , n} in which element i
is not placed at position i, for any i, is called a derangement. For example, for n = 3,
312 is a derangement but 321 is not as 2 is in the second place.

Let D
n
denote the number of derangements of n elements. Clearly D1 = 0. D2 = 1 as

21 is the only derangement. We will define D0 = 1. It is convenient to say that there is
one permutation of the empty set and that it does not map anything to itself.

Consider the general case with n + 1 elements. Element 1 has to be at some position k,
where 2 ≤ k ≤ n + 1. Now there are two possibilities. Either element k is at position 1,
in which case there are D

n−1 derangements possible. Otherwise, some other element is
at position 1. This second situation may also be viewed as follows: We keep element 1
fixed at the first position; derange elements 2, . . . , n + 1 in D

n
ways; finally, exchange

the elements at the first and kth positions to obtain a derangement of the elements
1, . . . , n+ 1. The recurrence for D

n+1 may now be written as:

D
n+1 = n(D

n
+D

n−1). (1)

Using the above recurrence, we can write D
n+1 − (n+ 1)D

n
as:

D
n+1 − (n+ 1)D

n
= nD

n−1 −D
n

= − (D
n
− nD

n−1)

= (−1)2 (D
n−1 − (n− 1)D

n−2)

= (−1)3 (D
n−2 − (n− 2)D

n−3)

...

= (−1)n−1(D2 − 2D1).

Put differently, the recurrence (??) may be expressed as:

D
n+1 = (n+ 1)D

n
+ (−1)n+1 where n ≥ 2. (2)

Define D(z) =
∑∞

n=0
D

n

z
n

n!
. Multiply both sides by zn+1/(n + 1)! and sum over n,

obtaining:

∞
∑

n=0

D
n+1

zn+1

(n+ 1)!
=

∞
∑

n=0

(n+ 1)D
n

zn+1

(n+ 1)!
+

∞
∑

n=0

(−1)n+1 zn+1

(n + 1)!



The left-hand-side is D(z)−D0. The first term on the right-hand-side is zD(z) and the
second term is e−z − 1. Thus the above equation may be written as:

D(z) =
e−z

1− z
=

∞
∑

n=0

(−1)n
zn

n!

∞
∑

n=0

zn,

from which we may write down D
n
as:

D
n
= n!

(

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

)

.

Thus the probability that no gentleman recieves his own hat is D
n
/n! which approaches

e−1 = 0.3678 . . . This is independent of n.

Problem 10-2

Suppose we are given a sequence of n terms x1, x2, . . . , xn
. We are interested in finding

out the number of ways of parenthesizing this sequence. We assume that it is forbidden
to insert parenthesis around a single term, like this: (x1). We therefore have to find
out the number of ways of inserting n − 1 left parentheses and n − 1 right parentheses
into the sequence x1, . . . , xn

such that as we go from left to right, the number of right
parentheses never exceeds the number of left parentheses. For n = 1, 2, 3, 4, we list all
valid parenthesizations below:

P1 P2 P3 P4

x1 (x1x2) ((x1x2)x3) (((x1x2)x3)x4)
(x1(x2x3)) (x1(x2(x3x4)))

((x1(x2x3))x4)
(x1((x2x3)x4))
((x1x2)(x3x4))

In how many ways can we parenthesize an expression with n terms?

Solution

Let P
n
be the number of ways to parenthesize a sequence of n terms such as the one

given. For n ≥ 2, there are essentially two possible ways of parenthesizing. The first one
looks like this:

((x1 . . . xr
)(x

r+1 . . . xn
)),

where 1 < r < n − 1. The second one accounts for the two cases: r = 1 and r = n − 1,
and looks like:

(x1(x2 . . . xn
)) or ((x1 . . . xn−1)xn

)

In either case, there are P
r
ways of parenthesizing the first r terms and P

n−r
ways of

parenthesizing the last n− r terms. Therefore we obtain:

P
n
=

n−1
∑

r=1

P
r
P
n−r

. (3)

Define P0 = 0 so that we can write P
n
=

∑

n

r=0
P
r
P
n−r

; also define P (z) =
∑

n≥0
P
n
zn.



Note that we cannot conclude P (z) = P (z)2, since recurrence (??) holds only for n ≥ 2.
To get around this, define a new sequence Q

n
such that:

Q
n
=







P0P0 = 0 if n = 0
P0P1 + P1P0 = 0 if n = 1
P
n

if n ≥ 2

and the OGF Q(z) =
∑

n≥0
Q

n
zn. Then Q(z) = P (z)2 and Q(z) = P (z)− z resulting in

the functional equation:
P (z)2 − P (z) + z = 0,

which yields:

P (z) =
1±

√
1− 4z

2
.

Since P (0) = 0, we choose the negative sign. Expanding P (z) using the binomial theorem,
we obtain that:

P
n
=

1

n

(

2n− 2

n− 1

)

.

Homework Assignment 10-1 (10 Points)

1. Find the EGFs for 1, 3, 5, 7, . . . and 0, 2, 4, 6, . . .

2. Find the coefficient of zn/n! for each of the following EGFs

A(z) =
1

1− z
ln

1

1− z
, A(z) = ez+z

2

.

Homework Assignment 10-2 (10 points)

Call a sequence of push und pop operations (↑ and ↓) valid, if it contains the same
number of ↑ and ↓ and no prefix of the sequence consists of fewer ↑ than ↓. For example,
(↑, ↑, ↓, ↓, ↑, ↓) is valid, while (↓, ↓, ↑, ↑) and (↑, ↓, ↓, ↑) are not valid. The number of ↑s in
a valid sequence is called the length of the sequence. How many valid sequences of length
n are there?


