
RWTH Aachen
Lehrgebiet Theoretische Informatik
Reidl—Rossmanith—Sanchez—Sikdar

SS 2014
Problem Set 7

02.06.2014

Analysis of Algorithms

Problem 7-1

Consider the following algorithm that searches an element x in a sorted array a of length
n = km+ 1:

1 i = 1;

while (a[i] <= x){

3 if (a[i] = x) then return i;

i = i + m;

5 if (i > n) return 0;

}

7 for (int j = i - 1; j >= max(1, i - (m - 1)); --j){

if (a[j] = x) then return j;

9 if (a[j] < x) then return 0;

}

11 return 0;

a) Draw the search tree and compute the internal and external path length for n = 10 and
m = 3.

b) Determine C+ and C− for arbitrary m, k.

c) What is, for given n, the best choice for m w.r.t. the running time?

Problem 7-2

Consider the following two programs for searching elements in ordered arrays: Determine the

1 int binsearch(double v)

{

3 int l, r, m;

l = 1; r = n;

5 while (l <= r) {

m = (r + l) / 2;

7 if (v == a[m]) return 1;

if (v < a[m]) r = m - 1; else l

= m + 1;

9 }

return 0;

11 }

1 int binsearch2(double v)

{

3 int l, r, m;

l = 1; r = n;

5 while (r - l > 1) {

m = (r + l) / 2;

7 if (v < a[m]) r = m - 1; else l

= m;

}

9 if (a[l] == v) return 1;

if (a[r] == v) return 1;

11 return 0;

}

number of executions of if-statements in both problems when searching for an element v, in
case of both, the successful and unsuccessful search.

Please give an exact solution for binsearch and an estimation of the form f(n) + O(1) for for
binsearch2.

Prerequisites:

• The array contains n different elements.

• For the successful search, each element is searched for with equal probability.

• For the unsuccessful search, v is chosen randomly, s.t., with probability 1
n+1 is “in” one

of the n+ 1 possible gaps.

Solution:

The first program was handled in the lecture. We therefore know the values C− = ⌊log(n +
1)⌋+ 2− 21−{log(n+1)} and C+ =

In an unsuccessful search, 2C− if-instructions are executed, since there are C− runs and each
run contains two if-instructions. In an successful search, we require 2C+ − 1 if-instructions,
because the second if-instructions in the last run is not reached anymore.

Let us now consider binsearch2. For an array with n elements, let Bn denote the average
number of if-instructions executed. If n < 3, the while is not entered at all. In the case of
an unsuccessful search we therefore obtain B1 = B2 = 2. For a successful search, B1 = 1, but
B2 =

1
2(1 + 2) = 3

2 .

For n ≥ 3, the while-loop is entered and one if-instruction is used per iteration of the while.
If a[m] > v, the algorithm searches on the left of the current element, and otherwise on the
right. The remaining array thus becomes shorter, either ⌊n/2⌋ or ⌈n/2⌉. This gives us two
recurrences:

Bn = B⌈n/2⌉ + 1

Bn = B⌊n/2⌋ + 1

for n ≥ 3.

Homework Assignment 7-1 (10 Points)

Consider the following algorithms for searching an element x in an ordered array a of length n.
Here, m, is some fixed, but known integer.

int search(int x) {

2 int l, r, i;

l = 1;

4 r = n;

while(r - l >= m) {

6 i = (l + r) / 2;

if (a[i] == x) return 1;

8 if (x < a[i]) r = i - 1; else l = i + 1;

}

10 for(i = l; i <= r; ++i) {

if (a[i] == x) return 1;

12 if (a[i] < x) return 0;

}

14 return 0;

}

Draw the search tree and compute internal and external path lengths for n = 17 and m = 3.

Homework Assignment 7-2 (10 Points)

Complete the analysis of the average number of times the if-instructions are executed in
binsearch2 for both a successful and an unsuccesful search (see Problem 7-2). First show
that for all k ≥ 0, the following hold:

1.
⌊⌊

n/2k
⌋

/2
⌋

=
⌊

n/2k+1
⌋

.

2.
⌈⌈

n/2k
⌉

/2
⌉

=
⌈

n/2k+1
⌉

.

Next, give a detailed analysis of the recurrences:

B̄n = B̄⌈n/2⌉ + 1

¯
Bn =

¯
B⌊n/2⌋ + 1.

